|国家科技期刊平台
首页|期刊导航|现代电子技术|基于Triplet Loss和KNN的非侵入式未知负荷识别

基于Triplet Loss和KNN的非侵入式未知负荷识别OA北大核心CSTPCD

Non-intrusive unknown load identification based on Triplet Loss and KNN

中文摘要英文摘要

针对在接入新负荷时传统非侵入式负荷识别算法会产生误分类的问题,提出一种基于三元组损失(Triplet Loss)和KNN的非侵入式未知负荷识别算法.首先,采用负荷稳态运行时的电流、电压构造多特征融合的彩色V-I轨迹图像;然后,挖掘在线的Semi-Hard样本对,使用Triplet Loss训练神经网络,并得到各样本的特征向量;最后,对特征向量进行PCA降维,并基于类中心构造邻域,使用KNN算法来进行负荷识别.使用PLAID、COOLL数据集对所提算法进行测试.测试结果表明,所提的负荷识别算法在已知类别负荷的分类和未知负荷的识别方面均有较高的准确率.

In allusion to the problems of misclassification of traditional non-intrusive load identification algorithm when new load is connected,a non-intrusive unknown load identification algorithm based on Triplet Loss and KNN(K-nearest neighbor)is proposed.The multi-feature fusion color V-I trajectory image is constructed by means of the current and voltage of the load during steady state operation.The online Semi-Hard sample pairs are mined,and the Triplet Loss is used to training neural network,so as to obtain feature vectors for each sample.The PCA(principal component analysis)dimensionality reduction for feature vectors is conducted,the neighbourhood is constructed based on the class center,and the KNN algorithm is used for the load identification.The algorithm is tested by means of PLAID and COOLL datasets.The testing results show that the proposed load identification algorithm has high accuracy in both the classification of known loads and the recognition of unknown loads.

张胜;陈铁

三峡大学 电气与新能源学院,湖北 宜昌 443002||梯级水电站运行与控制湖北省重点实验室,湖北 宜昌 443002

电子信息工程

三元组损失KNN非侵入式负荷监测V-I轨迹PCA降维特征融合

Triplet LossKNNnon-intrusive load monitoringV-I trajectoryPCA dimensionality reductionfeature fusion

《现代电子技术》 2024 (018)

8-14 / 7

国家自然科学基金项目(51907104)

10.16652/j.issn.1004-373x.2024.18.002

评论