| 注册
首页|期刊导航|现代电子技术|基于Triplet Loss和KNN的非侵入式未知负荷识别

基于Triplet Loss和KNN的非侵入式未知负荷识别

张胜 陈铁

现代电子技术2024,Vol.47Issue(18):8-14,7.
现代电子技术2024,Vol.47Issue(18):8-14,7.DOI:10.16652/j.issn.1004-373x.2024.18.002

基于Triplet Loss和KNN的非侵入式未知负荷识别

Non-intrusive unknown load identification based on Triplet Loss and KNN

张胜 1陈铁1

作者信息

  • 1. 三峡大学 电气与新能源学院,湖北 宜昌 443002||梯级水电站运行与控制湖北省重点实验室,湖北 宜昌 443002
  • 折叠

摘要

Abstract

In allusion to the problems of misclassification of traditional non-intrusive load identification algorithm when new load is connected,a non-intrusive unknown load identification algorithm based on Triplet Loss and KNN(K-nearest neighbor)is proposed.The multi-feature fusion color V-I trajectory image is constructed by means of the current and voltage of the load during steady state operation.The online Semi-Hard sample pairs are mined,and the Triplet Loss is used to training neural network,so as to obtain feature vectors for each sample.The PCA(principal component analysis)dimensionality reduction for feature vectors is conducted,the neighbourhood is constructed based on the class center,and the KNN algorithm is used for the load identification.The algorithm is tested by means of PLAID and COOLL datasets.The testing results show that the proposed load identification algorithm has high accuracy in both the classification of known loads and the recognition of unknown loads.

关键词

三元组损失/KNN/非侵入式负荷监测/V-I轨迹/PCA降维/特征融合

Key words

Triplet Loss/KNN/non-intrusive load monitoring/V-I trajectory/PCA dimensionality reduction/feature fusion

分类

电子信息工程

引用本文复制引用

张胜,陈铁..基于Triplet Loss和KNN的非侵入式未知负荷识别[J].现代电子技术,2024,47(18):8-14,7.

基金项目

国家自然科学基金项目(51907104) (51907104)

现代电子技术

OA北大核心CSTPCD

1004-373X

访问量0
|
下载量0
段落导航相关论文