基于改进YOLOv4的饮料识别算法OA
Beverage Identification Algorithm Based on Improved YOLOv4
随着深度学习在商品识别领域的发展,饮料作为常见的商品,将饮料识别技术应用于自助饮料售卖柜中具有一定的研究意义和价值.为了减少饮料类别特征相似误检,提出了一种基于改进YOLOv4 的饮料识别算法,通过在基础网络CSPDarknet53 的每组残差模块之间增加通道注意力机制来增强饮料区域特征信息.实验结果表明,改进后的YOLOv4模型mAP值为92.43%,比改进前提高了1.74%,具有较好的实际应用价值.
With the development of Deep Learning in the field of product identification,beverage as a common product,applying beverage recognition technology to self-service beverage cabinets has certain research significance and value.In order to reduce the misconduct of the beverage category due to similar characteristics,a beverage recognition algorithm based on improved YOLOv4 is proposed.By increasing the Channel Attention Mechanism between the residual modules of the basic network CSPDarknet53,the characteristic information of the beverage area is enhanced.The experimental results show that the mAP value of the improved YOLOv4 reaches 92.43%,which is about 1.74%higher than that before improvement,and the model has good practical application value.
沈薇;李红梅;陶苑;朱学玲
安徽新华学院 大数据与人工智能学院,安徽 合肥 230088
计算机与自动化
饮料识别CSPDarknet53YOLOv4通道注意力机制
beverage identificationCSPDarknet53YOLOv4Channel Attention Mechanism
《现代信息科技》 2024 (015)
36-41 / 6
安徽省省级质量工程项目(2018mooc434,2020jxtd120,2020mooc188);安徽省大学生创新训练项目(S202212216038,S202212216023)
评论