多模型融合投票预标注算法研究OA
Research on Pre-labelling Algorithm for Multi-model Fusion Voting
针对标注内容烦琐、耗时等问题,提出一种多模型融合投票预标注方法.在预标注过程中,将Cascade_RCNN、RetinaNet、CondLaneNet三个模型的检测结果进行融合,然后将各个模型生成的坐标结果进行提取、判断、匹配、参数平均、排序等处理,得到最终的预标注结果.在公开数据集以及自建数据集上进行多次试验的结果表明,算法能够提高预标注精度,减少标注过程中人工标注工作量,具有较好的效果,验证了该方法的有效性.
Aiming at the two problems of cumbersome and time-consuming annotation content,a pre-labelling algorithm for multi-model fusion voting is proposed.In the pre-labelling process,the detection results of the three models of Cascade_RCNN,RetinaNet and CondLaneNet are fused,and then the coordinate results generated by each model are processed by extracting,judging,matching,averaging of parameters,sorting and so on,to obtain the final pre-labelling results.The results of multiple tests on the public datasets and the self-constructed datasets show that the algorithm is able to improve the accuracy of pre-labelling and reduce the manual labelling workload in the process of labelling,which has a better effect and verifies the effectiveness of the method.
吉星;陈喆;陈飞扬;杨文听;樊桢珍;许丹
陕西重型汽车有限公司,陕西 西安 710000
计算机与自动化
深度学习目标检测车道线检测预标注模型融合
Deep Learningtarget detectionlaneline detectionpre-labellingmodel fusion
《现代信息科技》 2024 (016)
34-38 / 5
评论