| 注册
首页|期刊导航|现代信息科技|基于图神经网络的航空数据异常检测

基于图神经网络的航空数据异常检测

易霜 韩笑东 李炜

现代信息科技2024,Vol.8Issue(16):53-59,7.
现代信息科技2024,Vol.8Issue(16):53-59,7.DOI:10.19850/j.cnki.2096-4706.2024.16.012

基于图神经网络的航空数据异常检测

Aviation Data Anomaly Detection Based on Graph Neural Networks

易霜 1韩笑东 2李炜1

作者信息

  • 1. 四川大学 空天科学与工程学院,四川 成都 610065
  • 2. 中国空间技术研究院,北京 100094
  • 折叠

摘要

Abstract

Flight Operational Quality Assurance(FOQA)data records detailed parameters of flight status,which is crucial for evaluating the quality and safety of flight operations.Traditional"Exceedance Detection"algorithm identifies abnormal behavior by comparing it with predefined thresholds.In contrast,Deep Learning methods can comprehensively and flexibly analyze FOQA data,improving the accuracy of abnormal behavior detection.The TAGDNet proposed in the paper is an innovative framework for multi-class abnormal detection in FOQA data,including key components such as Temporal Convolutional Networks,Graph Neural Networks,and Hierarchical Graph Pooling.The framework extracts temporal features through Temporal Convolutional Networks firstly,then propagates information between nodes through introducing Graph Neural Networks and finally obtains abnormal detection results through Hierarchical Graph Pooling.Through extensive experiments on publicly available FOQA multi-class abnormal detection datasets,it has been demonstrated that this method outperforms other state-of-the-art methods.

关键词

FOQA数据/异常检测/图神经网络/图池化/时序卷积

Key words

FOQA data/anomaly detection/Graph Neural Networks/graph pooling/temporal convolutional

分类

信息技术与安全科学

引用本文复制引用

易霜,韩笑东,李炜..基于图神经网络的航空数据异常检测[J].现代信息科技,2024,8(16):53-59,7.

基金项目

"十四五"民用航天技术预先研究项目(030302) (030302)

现代信息科技

2096-4706

访问量0
|
下载量0
段落导航相关论文