| 注册
首页|期刊导航|新疆农业科学|基于无人机多光谱影像特征估算棉花生物量

基于无人机多光谱影像特征估算棉花生物量

邵亚杰 汤秋香 李珂 丁文浩 林涛 崔建平 郭仁松 王亮 吴凤全 王心

新疆农业科学2024,Vol.61Issue(6):1328-1335,8.
新疆农业科学2024,Vol.61Issue(6):1328-1335,8.DOI:10.6048/j.issn.1001-4330.2024.06.004

基于无人机多光谱影像特征估算棉花生物量

Study on cotton biomass estimation based on multi-spectral imaging features of unmanned aerial vehicle

邵亚杰 1汤秋香 1李珂 1丁文浩 1林涛 2崔建平 2郭仁松 2王亮 2吴凤全 1王心1

作者信息

  • 1. 新疆农业大学农学院/棉花教育部工程研究中心,乌鲁木齐 830052
  • 2. 新疆农业科学院经济作物研究所/农业农村部荒漠绿洲作物生理生态与耕作重点实验室,乌鲁木齐 830091
  • 折叠

摘要

Abstract

[Objective]To explore the applicability and accuracy of cotton biomass estimation model based on Vegetation Indexes(VIs)and machine learning algorithm.[Methods]On the interaction between nitrogen application and density at the experimental and collected AGB data and UAV multispectral remote sensing images of cotton fields at the main fertility periods simultaneously to calculate eight VIs and introduce three VIs with the highest AGB correlation coefficients.Vactor Regression(SVR),Partial Least Squares Re-gression(PLSR),and Deep Neural Network(DNN),and evaluated the applicability and estimation accuracy of different VIs and models.[Results]All eight VIs showed significant correlations with AGB,among which the absolute values of the correlation coefficients|r|of NGBDI,NDREI and EXG reached 0.659-0.788,and there was a significant correlation between them and cotton biomass.(3)Among the three regression mod-els,the SVR model had the best estimation effect,with the model validation accuracy of R2=0.89,RMSE=2.30,and rRMSE=0.20.[Conclusion]Compared with the PLSR and DNN estimation models,the SVR model is more suitable for estimating cotton biomass,and the study is important for enriching the remote sens-ing monitoring technology of cotton biomass and improving the accurate management of production.The study is important to enrich the remote sensing monitoring technology of cotton biomass and improve the accurate man-agement of production.

关键词

棉花/无人机/多光谱影像/生物量/估算

Key words

cotton/unmanned aerial vehicle(UAV)/multispectral image/biomass/estimate

分类

农业科技

引用本文复制引用

邵亚杰,汤秋香,李珂,丁文浩,林涛,崔建平,郭仁松,王亮,吴凤全,王心..基于无人机多光谱影像特征估算棉花生物量[J].新疆农业科学,2024,61(6):1328-1335,8.

基金项目

新疆维吾尔自治区重大科技专项(2023A02003-5) (2023A02003-5)

新疆农业科学院稳定支持项目(xjnkywdzc-2023007-6) (xjnkywdzc-2023007-6)

新疆维吾尔自治区财政专项数字棉花科技创新平台建设项目 ()

新疆"天山英才"培养计划"棉花轻简高效栽培技术创新团队"(2023TSYCTD004) (2023TSYCTD004)

国家现代农业产业技术体系-棉花产业技术体系(CARS-15-13) (CARS-15-13)

新疆现代农业产业技术体系-棉花产业技术体系(XIARS-03) (XIARS-03)

新疆"天山英才"培养计划"青年拔尖人才项目-青年科技创新人才"(2023TSYCCX0019) (2023TSYCCX0019)

新疆农业大学研究生科技创新计划项目(XJAUGRI2022036) The Major Scienceand Technology Project of Xinjiang Uygur Autonomous Region(2023A02003-5) (XJAUGRI2022036)

The Stable Support Project of Xinjiang Academy of Agricultural Sciences(xjnkywdzc-2023007-6) (xjnkywdzc-2023007-6)

The Special Financial Project of Xinjiang Uygur Autono-mous Region"Digital Cotton Science and Technology Innovation Platform Construction Project" ()

The Xinjiang"Tianshan Talents"TrainingProgram"Cotton Light and Efficient Cultivation Technology Innovation Team"(2023TSYCTD004) (2023TSYCTD004)

The National Modern Agricultural IndustryTechnology System-Cotton Industry Technology System(CARS-15-13) (CARS-15-13)

The Xinjiang Modern Agricultural Industry Technology System-CottonIndustry Technology System(XIARS-03) (XIARS-03)

the Xinjiang"Tianshan Talents"Training Program"Young Top-notch Talent Project-Young Scientific andTechnological Innovation Talent"(2023TSYCCX0019) (2023TSYCCX0019)

The Graduate Scientific and Technological Innovation Program Project of XinjiangAgricultural University(XJAUGRI2022036) (XJAUGRI2022036)

新疆农业科学

OA北大核心CSTPCD

1001-4330

访问量0
|
下载量0
段落导航相关论文