| 注册
首页|期刊导航|信息安全研究|物联网感知环境中抗投毒可验证安全联邦学习方案

物联网感知环境中抗投毒可验证安全联邦学习方案

韩刚 马炜燃 张应辉 刘伟 盛丽玲

信息安全研究2024,Vol.10Issue(9):804-810,7.
信息安全研究2024,Vol.10Issue(9):804-810,7.DOI:10.12379/j.issn.2096-1057.2024.09.03

物联网感知环境中抗投毒可验证安全联邦学习方案

A Poisoning-resistant Verifiable Secure Federated Learning Scheme in IoT Perception Environments

韩刚 1马炜燃 1张应辉 2刘伟 2盛丽玲2

作者信息

  • 1. 西安邮电大学网络空间安全学院 西安 710121||空天地一体化综合业务网全国重点实验室(西安电子科技大学)西安 710126
  • 2. 西安邮电大学网络空间安全学院 西安 710121
  • 折叠

摘要

Abstract

To address the issue of model poisoning during predictive model training in the IoT intelligent sensing phase,this study proposes an anti-poisoning attack scheme with verification capabilities.The scheme employs a cosine similarity clustering mechanism and a filtering strategy as a trusted third-party detection algorithm,integrating homomorphic encryption for authentication.Additionally,lightweight data encryption is used to protect the privacy of local model data.The Shamir Secret Sharing algorithm ensures robustness in model training against users dropout.By introducing a trusted third party,the scheme effectively detects and prevents dishonest users or attackers from compromising the accuracy of federated learning models.Simulation results demonstrate that the scheme can accurately detect model data involved in training while ensuring the security of users'local model data and handling large volumes of heterogeneous data in IoT intelligent sensing environments.

关键词

联邦学习/投毒攻击/物联网智能感知/隐私保护/同态加密

Key words

federated learning/poisoning attack/IoT intelligent perception/privacy protection/homomorphic encryption

分类

信息技术与安全科学

引用本文复制引用

韩刚,马炜燃,张应辉,刘伟,盛丽玲..物联网感知环境中抗投毒可验证安全联邦学习方案[J].信息安全研究,2024,10(9):804-810,7.

基金项目

国家自然科学基金项目(62102312) (62102312)

陕西省重点研发计划项目(2024GX-YBXM-079) (2024GX-YBXM-079)

ISN全国重点实验室开放课题(ISN24-13) (ISN24-13)

陕西省高校青年创新团队项目(23JP160) (23JP160)

信息安全研究

OA北大核心CSTPCD

2096-1057

访问量0
|
下载量0
段落导航相关论文