| 注册
首页|期刊导航|信息工程大学学报|一种基于深度神经网络的多阶段PUF抗建模能力评估方法

一种基于深度神经网络的多阶段PUF抗建模能力评估方法

刘威

信息工程大学学报2024,Vol.25Issue(4):447-452,6.
信息工程大学学报2024,Vol.25Issue(4):447-452,6.DOI:10.3969/j.issn.1671-0673.2024.04.012

一种基于深度神经网络的多阶段PUF抗建模能力评估方法

A Deep Neural Network-Based Multi-Stage Evaluation Method for Modeling Resistance of PUFs

刘威1

作者信息

  • 1. 信息工程大学,河南 郑州 450001
  • 折叠

摘要

Abstract

To address the limitation of current evaluation methods in assessing the modeling resistance of Physical Unclonable Function(PUF),a three-level modeling threat model that PUFs encounter is de-fined.This model details the attacking target,the adversary's knowledge and capabilities,the attack-ing strategy,and the attacking mode.A deep neural network-based multi-stage evaluation method is proposed to assess the resistance of PUFs to machine learning modeling attacks,reliability-based at-tacks,and power/electromagnetic side-channel attacks.The method is carried out in three sequential phases,using feed-forward neural network modeling attacks and side-channel modeling attacks as the assessment tools,ensuring a comprehensive PUF modeling resistance assessment.The evaluation re-sults indicate that only a small number of the tested PUFs display resistance to machine learning and reliability modeling attacks.However,none of them demonstrate resistance to power side-channel mod-eling attacks.

关键词

深度神经网络/物理不可克隆函数/抗建模/侧信道/评估

Key words

deep neural network/physical unclonable function/modeling resistance/side channel/evaluation

分类

信息技术与安全科学

引用本文复制引用

刘威..一种基于深度神经网络的多阶段PUF抗建模能力评估方法[J].信息工程大学学报,2024,25(4):447-452,6.

基金项目

河南省重点研发项目(221111210300) (221111210300)

信息工程大学学报

1671-0673

访问量0
|
下载量0
段落导航相关论文