一种基于深度神经网络的多阶段PUF抗建模能力评估方法OA
A Deep Neural Network-Based Multi-Stage Evaluation Method for Modeling Resistance of PUFs
针对现有评估方法均无法全面评估物理不可克隆函数(PUF)抗建模能力的问题,定义PUF面临的3级建模威胁模型,分别阐明3类攻击的目的、对手的知识能力、攻击策略和攻击模式.基于此,设计一种基于深度神经网络的PUF抗建模能力评估方法,使用前馈神经网络建模攻击和侧信道建模攻击作为评估工具,分3个阶段依次评估目标PUF抵御机器学习建模攻击、可靠性侧信道攻击和功耗/电磁侧信道攻击的能力,解决传统方法无法评估PUF抗侧信道建模能力的问题.评估结果表明,被测PUF中仅有少部分拥有抗机器学习建模和抗可靠性建模能力,但均不具备抗功耗侧信道建模能力.
To address the limitation of current evaluation methods in assessing the modeling resistance of Physical Unclonable Function(PUF),a three-level modeling threat model that PUFs encounter is de-fined.This model details the attacking target,the adversary's knowledge and capabilities,the attack-ing strategy,and the attacking mode.A deep neural network-based multi-stage evaluation method is proposed to assess the resistance of PUFs to machine learning modeling attacks,reliability-based at-tacks,and power/electromagnetic side-channel attacks.The method is carried out in three sequential phases,using feed-forward neural network modeling attacks and side-channel modeling attacks as the assessment tools,ensuring a comprehensive PUF modeling resistance assessment.The evaluation re-sults indicate that only a small number of the tested PUFs display resistance to machine learning and reliability modeling attacks.However,none of them demonstrate resistance to power side-channel mod-eling attacks.
刘威
信息工程大学,河南 郑州 450001
计算机与自动化
深度神经网络物理不可克隆函数抗建模侧信道评估
deep neural networkphysical unclonable functionmodeling resistanceside channelevaluation
《信息工程大学学报》 2024 (004)
447-452 / 6
河南省重点研发项目(221111210300)
评论