| 注册
首页|期刊导航|信息工程大学学报|基于熵源验证的分组密码识别方案

基于熵源验证的分组密码识别方案

张家渟 李莘玥 顾纯祥

信息工程大学学报2024,Vol.25Issue(4):472-477,6.
信息工程大学学报2024,Vol.25Issue(4):472-477,6.DOI:10.3969/j.issn.1671-0673.2024.04.016

基于熵源验证的分组密码识别方案

Block Cipher Recognition Scheme Based on Entropy Source Validation

张家渟 1李莘玥 2顾纯祥1

作者信息

  • 1. 信息工程大学,河南 郑州 450001||河南省网络密码技术重点实验室,河南 郑州 450001
  • 2. 安徽师范大学,安徽 芜湖 241000
  • 折叠

摘要

Abstract

The existing cryptographic algorithm identification schemes are mainly based on informa-tion entropy and randomness testing methods to design ciphertext features,which has the problem of low classification accuracy.In this paper,ciphertext features are extracted according to the entropy es-timation method,and five common machine learning algorithms including logistic regression,support vector machine,and decision tree are used to conduct classification experiments on five block ciphers DES,AES,3DES,Blowfish,and CAST.The experimental results show that the recognition scheme based on entropy source validation can effectively distinguish the working modes of block ciphers,with a classification accuracy of up to 99%.Meanwhile,the binary classification recognition accuracy of DES and AES with ECB mode is as high as 95%,and the recognition accuracy of the five classification experiments reaches 62.7%,outperfoming the 75%and 52%achieved by schemes relying solely on randomness detection.This research shows that the use of entropy source verification method can en-rich the ciphertext feature library and improve the recognition accuracy of cryptographic algorithms.

关键词

密码算法识别/特征提取/熵源验证/机器学习/随机性检测

Key words

cryptographic algorithm identification/feature extraction/entropy source validation/ma-chine learning/randomized detection

分类

信息技术与安全科学

引用本文复制引用

张家渟,李莘玥,顾纯祥..基于熵源验证的分组密码识别方案[J].信息工程大学学报,2024,25(4):472-477,6.

基金项目

国家自然科学基金(61772548,23456789) (61772548,23456789)

河南省优秀青年基金(222300420099) (222300420099)

信息工程大学学报

1671-0673

访问量0
|
下载量0
段落导航相关论文