|国家科技期刊平台
首页|期刊导航|宇航材料工艺|酚醛/硅改性环氧共混物空气环境降解残留物结构及组分研究

酚醛/硅改性环氧共混物空气环境降解残留物结构及组分研究OA北大核心CSTPCD

Study on Structure and Composition of Residual Compounds From Air Environment Thermolysis of Phenolic/Siloxane Modified Epoxy Blends

中文摘要英文摘要

通过缩合反应,将端羟基聚二甲基硅氧烷(HTPDMS)与双酚A型环氧树脂(CYD-128)结合,制得环氧-聚硅氧烷共聚物(ES),随后与酚醛树脂共混改性,得到聚硅氧烷改性环氧/酚醛共混物(ES/PF).利用热重-差示扫描热分析(TGA-DSC)、傅里叶红外光谱(FTIR)、扫描电镜附加能谱仪(SEM-EDS)以及X射线光电子能谱(XPS)等技术,深入研究ES/PF共混物的热性能及其在不同温度下的热解残留物化学结构和组分.实验结果显示,与纯酚醛树脂相比,ES/PF共混物在800 ℃空气气氛下的残余率提高了 438%,最大放热速率从21.98 W/g降低至14.93 W/g,而在N2气氛下,其残余率则略有降低,降幅为14.3%.此外,ES/PF共混体系在430~600 ℃内的热解凝聚相中,富含Si-Ox的杂化结构对碳层的稳定形成起到了关键作用,有效延缓和阻碍了树脂的进一步降解,进而提高了残碳率.在温度超过430 ℃时,残留物中硅元素的赋存形态发生显著变化,从430 ℃时的以SiO2为主(占比超过80%),转变为600 ℃时的大部分为水合二氧化硅(SiO2.nH2O).上述结果充分表明,硅元素在热氧条件下能够显著提升酚醛树脂的残碳量和热稳定性,但在N2条件下,其影响受到一定程度的抑制,这可能归因于硅氧烷基团在热解过程中的吸氧机制.ES/PF共混材料体系的热解残留物结构及组分对于提升材料的热残余强度和耐烧蚀性能具有积极作用.

The epoxy-polysiloxane copolymer(ES)was synthesized by condensation reaction of hydroxy-terminated polydimethylsiloxane(HTPDMS)and bisphenol A epoxy resin(CYD-128),and then blended with phenolic resin to modify and obtain polysiloxane modified epoxy/phenolic blend(ES/PF).Thermal properties of ES/PF blend and the chemical structure and composition of pyrolysis residues at different temperatures were investigated by thermogravimetry-differential scanning calorimetry(TGA-DSC),fourier transform infrared spectroscopy(FTIR),scanning electron microscopy with energy dispersive spectrometer(SEM-EDS),and X-ray photoelectron spectroscopy(XPS).The results show that,compared with pure phenolic resin,the residual yield of ES/PF blend increases by 438%at 800 ℃ in air atmosphere,and the maximum heat release rate decreases from 21.98 W/g to 14.93 W/g.However,under N2 atmosphere,the residual yield decreases slightly by 14.3%.In addition,the hybrid structure rich in Si-Ox in the pyrolysis condensed phase of ES/PF blend system within 430-600 ℃ plays a key role in the stable formation of carbon layer,effectively delaying and inhibiting the further degradation of resin,and thus improving the carbon residue rate.When the temperature exceeds 430 ℃,the existing form of silicon element in the residue changes significantly,from SiO2(accounting for more than 80%)at 430 ℃ to hydrated silica(SiO2·nH2O)at 600 ℃.These results fully indicate that the silicon element can significantly improve the carbon residue and thermal stability of phenolic resin under thermal oxygen condition,but its influence is suppressed to a certain extent under N2 conditions,which may be attributed to the oxygen absorption mechanism of siloxane groups during pyrolysis process.In addition,the structure and composition of pyrolysis residues of ES/PF blend system have a positive effect on improving the thermal residual strength and ablation resistance of the material.

冀运东;江艳艳;周睿;曹东风;李书欣

武汉理工大学材料科学与工程学院,武汉 430070湖北航天技术研究院总体设计所,武汉 430040

聚硅氧烷环氧树脂酚醛树脂热解结构

PolysiloxaneEpoxy resinPhenolicThermolysisStructure

《宇航材料工艺》 2024 (004)

117-125 / 9

先进能源科学与技术广东省实验室佛山分中心(佛山仙湖实验室)重点基金(No.XHT2020-002);中央高校基本科研业务费专项资金(2020Ⅲ066GX);湖北省对外科技合作项目(2013BHE008)

10.12044/j.issn.1007-2330.2024.04.017

评论