| 注册
首页|期刊导航|空军军医大学学报|糖尿病患者动脉粥样硬化发病风险预测模型比较研究

糖尿病患者动脉粥样硬化发病风险预测模型比较研究

韩政元 杨紫薇 赵陆洋 李林怿 刘奎 万毅

空军军医大学学报2024,Vol.45Issue(8):930-934,5.
空军军医大学学报2024,Vol.45Issue(8):930-934,5.DOI:10.13276/j.issn.2097-1656.2024.08.017

糖尿病患者动脉粥样硬化发病风险预测模型比较研究

A comparative study of risk prediction models for atherosclerosis in patients with diabetes mellitus

韩政元 1杨紫薇 2赵陆洋 1李林怿 3刘奎 3万毅3

作者信息

  • 1. 空军军医大学:基础医学院学员三大队,陕西西安 710032
  • 2. 空军军医大学:基础医学院学员二大队,陕西西安 710032
  • 3. 空军军医大学:卫勤训练基地卫生勤务教研室,陕西西安 710032
  • 折叠

摘要

Abstract

Objective To analyze and compare the application of LightGBM and random forest machine learning model in the risk prediction model of atherosclerosis in diabetic patients.Methods Based on the public data set of National Population Health Data Center,the risk prediction model of atherosclerosis was established and compared with LightGBM and random forest algorithms.Results The machine learning model of LightGBM and random forest was used to analyze atherosclerosis.It was found that the accuracy of random forest was 0.624 2,area under the curve(AUC)was 0.671 8,and precision was 0.629 7,which were all higher than those of LightGBM.However,the recall rate of LightGBM and F1 score of LightGBM were 0.756 7 and 0.665 2,which were higher than those of random forest,but both of them had good prediction effects for atherosclerosis.Conclusion In the prediction model of atherosclerosis,random forest has a higher accuracy,AUC and precision,while LightGBM has a higher recall rate and F1 score.In general,both of them can accurately predict atherosclerosis,which can be applied to clinical practice and provide useful reference for the related research of clinical auxiliary diagnosis of diabetic complications.

关键词

糖尿病/动脉粥样硬化/机器学习/预测分析

Key words

diabetes mellitus/atherosclerosis/machine learning/prediction analysis

分类

医药卫生

引用本文复制引用

韩政元,杨紫薇,赵陆洋,李林怿,刘奎,万毅..糖尿病患者动脉粥样硬化发病风险预测模型比较研究[J].空军军医大学学报,2024,45(8):930-934,5.

基金项目

国家自然科学基金面上项目(82073663) (82073663)

空军军医大学学报

OACHSSCD

2097-1656

访问量7
|
下载量0
段落导航相关论文