| 注册
首页|期刊导航|中国电机工程学报|机器学习赋能的优化算法及其在新型电力系统中的应用与展望

机器学习赋能的优化算法及其在新型电力系统中的应用与展望

王新迎 闫冬 施展 张东霞 邓琪 林振炜

中国电机工程学报2024,Vol.44Issue(16):6367-6384,18.
中国电机工程学报2024,Vol.44Issue(16):6367-6384,18.DOI:10.13334/j.0258-8013.pcsee.232588

机器学习赋能的优化算法及其在新型电力系统中的应用与展望

Machine Learning Empowered Optimization Algorithms and Their Applications and Prospects in New Type Power System

王新迎 1闫冬 1施展 1张东霞 1邓琪 2林振炜2

作者信息

  • 1. 中国电力科学研究院有限公司,北京市海淀区 100192
  • 2. 杉数科技(北京)有限公司,北京市朝阳区 100102
  • 折叠

摘要

Abstract

In recent years,with the rapid development of renewable energy and the accelerated promotion of new power system construction,the uncertainty of power systems has become more prominent,posing huge challenges for modeling and optimization scheduling.Machine learning techniques can effectively utilize vast historical data to provide new theoretical basis for optimizing stable and fast solutions.This paper provides a detailed analysis of the progress in this emerging interdisciplinary field.First,for general optimization problems,based on the interaction between machine learning and optimization computing,the basic algorithm framework is summarized into three categories:machine learning end-to-end optimization solving,machine learning enhanced optimization solving algorithms,and machine learning and power system optimization joint driving solving.Their basic principles and applicable problem forms are explained respectively.Then,the progress of related technology applications in power system optimization is reviewed and the basic methods and application effects are summarized.Finally,the development trends of learning-based optimization methods and their application prospects in new power systems are explored,with the aim of providing references and inspirations for future research work in this emerging field.

关键词

机器学习/新型电力系统/人工智能/优化算法

Key words

machine learning/new type power system/artificial intelligence/optimization algorithm

分类

信息技术与安全科学

引用本文复制引用

王新迎,闫冬,施展,张东霞,邓琪,林振炜..机器学习赋能的优化算法及其在新型电力系统中的应用与展望[J].中国电机工程学报,2024,44(16):6367-6384,18.

基金项目

国家重点研发计划项目(2022ZD0119804) (2022ZD0119804)

国家自然科学基金联合基金项目(U2066213).National Key R&D Program of China(2022ZD0119804) (U2066213)

Project Supported by National Natural Science Foundation of China(U2066213). (U2066213)

中国电机工程学报

OA北大核心CSTPCD

0258-8013

访问量0
|
下载量0
段落导航相关论文