| 注册
首页|期刊导航|中国地质灾害与防治学报|机器学习模型在地质灾害遥感调查数据分析中的应用现状

机器学习模型在地质灾害遥感调查数据分析中的应用现状

张凯翔 蒋道君 吕小宁 张曦

中国地质灾害与防治学报2024,Vol.35Issue(4):126-134,9.
中国地质灾害与防治学报2024,Vol.35Issue(4):126-134,9.DOI:10.16031/j.cnki.issn.1003-8035.202302029

机器学习模型在地质灾害遥感调查数据分析中的应用现状

Current application of machine learning models in the analysis of remote sensing survey data for geological hazards

张凯翔 1蒋道君 1吕小宁 1张曦1

作者信息

  • 1. 中铁第四勘察设计院集团有限公司,湖北武汉 430063
  • 折叠

摘要

Abstract

To investigate the current landscape of the application of machine learning in remote sensing surveys of geological disasters and to support the development of intelligent remote sensing survey technologies for geological disasters,a bibliometric analysis of machine learning and geological disaster remote sensing survey technology was conducted using the China National Knowledge Infrastructure(CNKI)database.Visual analysis was performed from multiple perspectives,including the number of publications,research hotspots,and research institutions,to describe the research progress of machine learning and geological disaster remote sensing survey technology.VOSviewer software was utilized to scrutinize the high-frequency keywords and their associations between machine learning and geological disaster remote sensing survey technology.The results showed that remote sensing survey technology for geological disasters in China is gradually shifting from traditional"topographic measurement"towards more holistic"topographic and geometric measuremen"approaches.With the advancement of unmanned aerial vehicle remote sensing technology,the new generation of intelligent learning algorithms have emerged as the predominant research direction,fostering the growth of automated geological disaster recognition and intelligent extraction techniques.Nevertheless,the future of remote sensing survey technology for geological disasters is poised to evolve into a comprehensive technical system that emphasizes the synergistic"air-space-ground"application and emergency monitoring.Considering the diverse characteristics of remote sensing image data,the primary developmental trajectory will involve an extensive exploration of various machine learning algorithms across different remote sensing interpretation scenarios.

关键词

地质灾害/遥感/机器学习模型/文献计量

Key words

geologic hazard/remote sensing/machine learning/bibliometrics

分类

天文与地球科学

引用本文复制引用

张凯翔,蒋道君,吕小宁,张曦..机器学习模型在地质灾害遥感调查数据分析中的应用现状[J].中国地质灾害与防治学报,2024,35(4):126-134,9.

基金项目

国家重点研发计划项目(2021YFB2600402) (2021YFB2600402)

中国铁建股份有限公司科技重大专项(2022-A02) (2022-A02)

中国地质灾害与防治学报

OACSTPCD

1003-8035

访问量0
|
下载量0
段落导航相关论文