基于多智能体深度Q网络交互的板壳加强筋生长式设计OA北大核心CSTPCD
Growth Design of Stiffeners for Shell/Plate Structures Based on MADQN Interaction
基于板壳加强筋生长步序列的马尔可夫性质,提出了板壳加强筋生长式设计的强化学习驱动策略.以结构整体应变能最小化为目标,运用马尔可夫决策过程对板壳加强筋的生长过程进行建模.通过引入多智能体系统,共享加强筋生长式过程的状态奖励并记忆特定动作,降低学习复杂度,实现了加强筋生长式过程奖励值的波动收敛,达成板壳加强筋生长式设计策略.最后给出算例并将平滑处理后的加强筋布局与经典算法的设计结果进行对比,验证了基于多智能体深度Q网络交互的板壳加强筋生长式设计的有效性.
Based on the Markov property of the growth steps of shell/plate stiffeners,a reinforce-ment learning driving strategy of the growth design of shell/plate stiffeners was proposed.Aiming at minimizing the overall strain energy of the structures,Markov decision process was used to model the growth processes of the stiffeners.By introducing a multi-agent system to share the states and the re-wards of the stiffeners growth processes,and memorizing specific actions,the learning complexity was reduced.Meanwhile,the convergence of the reward value of the stiffeners growth processes was realized.Therefore,the growth design strategy of shell/plate stiffeners was achieved.Finally,a nu-merical example was given and the results of the smoothed stiffeners layout were compared with those of the classical algorithm,which verifies the validity of the growth design of stiffeners for shell/plate structures based on MADQN interaction.
钟意;杨勇;姜学涛;潘顺洋;朱其新;王磊
苏州科技大学机械工程学院,苏州,215009
机械工程
板壳加强筋生长式多智能体深度Q网络布局设计强化学习
stiffener for shell/plate structuregrowth patternmulti-agent deep Q network(MADQN)layout designreinforcement learning
《中国机械工程》 2024 (008)
1397-1404 / 8
国家自然科学基金(51805346);江苏省研究生科研与实践创新计划(KYCX24_3423,KYCX22_3260)
评论