| 注册
首页|期刊导航|CSEE Journal of Power and Energy Systems|Very Short-Term Forecasting of Distributed PV Power Using GSTANN

Very Short-Term Forecasting of Distributed PV Power Using GSTANN

Tiechui Yao Jue Wang Yangang Wang Pei Zhang Haizhou Cao Xuebin Chi Min Shi

CSEE Journal of Power and Energy Systems2024,Vol.10Issue(4):P.1491-1501,11.
CSEE Journal of Power and Energy Systems2024,Vol.10Issue(4):P.1491-1501,11.DOI:10.17775/CSEEJPES.2022.00110

Very Short-Term Forecasting of Distributed PV Power Using GSTANN

Tiechui Yao 1Jue Wang 1Yangang Wang 1Pei Zhang 2Haizhou Cao 1Xuebin Chi 1Min Shi3

作者信息

  • 1. Computer Network Information Center of the Chinese Academy of Sciences,Beijing 100190,China University of Chinese Academy of Sciences,Beijing 100190,China
  • 2. School of Electrical Engineering,Beijing Jiaotong University,Beijing 100044,China
  • 3. State Grid Hebei Electric Power Co.,Ltd.,Shijiazhuang 050000,China
  • 折叠

摘要

关键词

Distributed photovoltaic power forecasting/graph convolutional networks/satellite images/spatial-temporal attention

分类

信息技术与安全科学

引用本文复制引用

Tiechui Yao,Jue Wang,Yangang Wang,Pei Zhang,Haizhou Cao,Xuebin Chi,Min Shi..Very Short-Term Forecasting of Distributed PV Power Using GSTANN[J].CSEE Journal of Power and Energy Systems,2024,10(4):P.1491-1501,11.

基金项目

supported in part by the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA27000000)。 (No.XDA27000000)

CSEE Journal of Power and Energy Systems

OACSTPCDEI

2096-0042

访问量0
|
下载量0
段落导航相关论文