贫数据条件下锂离子电池容量退化轨迹预测方法OA北大核心CSTPCD
在锂离子电池使用过程中,因实际运行条件的限制,通常难以获取大量完整标记的电池数据,对实现电池容量退化轨迹的准确预测构成了显著挑战。为此,本文提出了一种融合容量退化曲线增广和常用神经网络算法的锂离子电池容量退化轨迹预测方法。首先,基于少量完整标记的电池容量退化数据,采用多项式函数和蒙特卡洛方法得到虚拟容量退化曲线,并通过KL散度和欧氏距离进行筛选。之后,构建多层感知机(multi-layer perceptron,MLP)、卷积神经网络(convolutional neural network,CNN)、门控循环单元网络(gated recurrent unit,GRU)和长短期记忆网络(long short-term memory,LSTM)等四类常用神经网络模型,用以映射虚拟容量退化曲线数据至电池实际容量。最后,以虚拟容量退化曲线数据为输入,实际容量为输出,利用少量完整标记电池的数据对模型进行预训练,并利用待预测电池的早期退化数据进行微调,从而实现容量退化轨迹预测。通过77只具有不同放电方案的电池的数据对所提方法进行验证。结果表明,在仅有3只完整标记电池的容量退化数据条件下,所提方法的预测性能不受神经网络类型的影响,四类神经网络均准确预测了其余电池的容量退化轨迹,MAPE和RMSE的均值分别控制在2.3%和31 mAh以下。
管鸿盛;钱诚;孙博;任羿;
北京航空航天大学可靠性与系统工程学院,北京100191
动力与电气工程
锂离子电池容量退化轨迹贫数据条件神经网络
《储能科学与技术》 2024 (009)
P.3084-3093 / 10
评论