| 注册
首页|期刊导航|吉林大学学报(信息科学版)|基于多方向特征和连通性检测的眼底图像分割

基于多方向特征和连通性检测的眼底图像分割

窦全胜 李丙春 刘静 张家源

吉林大学学报(信息科学版)2024,Vol.42Issue(4):690-699,10.
吉林大学学报(信息科学版)2024,Vol.42Issue(4):690-699,10.

基于多方向特征和连通性检测的眼底图像分割

Vessel Image Segmentation Based on Multi-Directional Features and Connectivity Detection

窦全胜 1李丙春 2刘静 2张家源3

作者信息

  • 1. 喀什大学计算机科学与技术学院,新疆喀什 844008||山东工商学院计算机科学与技术学院,山东烟台 264005
  • 2. 喀什大学计算机科学与技术学院,新疆喀什 844008
  • 3. 山东工商学院计算机科学与技术学院,山东烟台 264005
  • 折叠

摘要

Abstract

Fundus images often contain a large number of small blood vessels with significant noise interference and blurred boundaries,making segmentation challenging.To address these characteristics,a fundus image segmentation method called MDF_Net&CD(Multi-Directional Features neural Network and Connectivity Detection)is proposed,based on multidirectional features and connectivity detection.A deep neural network model,MDF_Net(Multi-Directional Features neural Network),is designed to take different directional feature vectors of pixels as input.MDF_Net is used for the initial segmentation of the fundus images.A connectivity detection algorithm is proposed to revise the preliminary segmentation results of MDF_Net,according to the geometric characteristics of blood vessels.In the public fundus image dataset,MDF_Net&CD is compared with recent representative segmentation methods.The experimental results show that MDF_Net&CD can effectively capture the detailed characteristics of pixels,and has a good segmentation effect on irregular,severely noisy,and blurred boundaries of small blood vessels.The evaluation indices are balanced,and the sensitivity,F1 score,and accuracy are better than other methods participating in the comparison.

关键词

眼底血管分割/多方向特征/连通性检测/深度神经网络

Key words

vessel image segmentation/multi-directional features/connectivity detection/deep neural network

分类

信息技术与安全科学

引用本文复制引用

窦全胜,李丙春,刘静,张家源..基于多方向特征和连通性检测的眼底图像分割[J].吉林大学学报(信息科学版),2024,42(4):690-699,10.

基金项目

国家自然科学基金资助项目(61976124 ()

61976125) ()

新疆维吾尔自治区自然科学基金资助项目(2022D01A237 ()

2022D01A238) ()

吉林大学学报(信息科学版)

OACSTPCD

1671-5896

访问量0
|
下载量0
段落导航相关论文