猎豹算法优化的车用PMSM控制策略研究OA北大核心CSTPCD
Research on control strategy of automotive PMSM optimized based on cheetah optimizer
为了解决电机响应速度慢、抗干扰能力不足的问题,研究了PI控制器控制技术.根据矢量控制原理搭建了永磁同步电机矢量控制模型.为提升控制系统面对转速变化的动态性能,根据模糊控制原理设计了模糊PI转速控制器,增加了系统的响应速度.针对模糊控制设计过程中存在主观性及不同工况下控制器参数选择较难等问题,提出了一种基于猎豹算法与模糊PI相结合的智能控制策略,解决系统参数匹配问题.在Matlab/Simulink搭建相关模型并进行仿真.仿真结果表明:通过猎豹算法能够迅速得到模糊PI控制器的最佳参数,使电机的转速响应更快,抗干扰性更强,使控制系统具有更好的动态性能.
To address the slow motor response speed and insufficient anti-interference ability,this paper studies the control technology based on PI controller.First,a permanent magnet synchronous motor vector control model is built based on the principle of vector control.Second,to improve the dynamic performance of the control system in response to speed changes,a fuzzy PI speed controller is designed based on the principle of fuzzy control,which increases the system's response speed.Then,a smart control strategy based on the combination of the Leopard algorithm and fuzzy PI is proposed to address the subjectivity in the process of fuzzy control design and the difficulty in selecting controller parameters under different operating conditions for system parameter matching.Finally,relevant models are built and simulated in MATLAB/Simulink.Our simulation results show the Leopard algorithm quickly obtains the optimal parameters of the fuzzy PI controller and achieves a faster motor speed response with stronger anti-interference ability,enabling the control system to deliver better dynamic performances.
乔月阳;王靖岳;李浩;王哲
沈阳理工大学 汽车与交通学院,沈阳 110159
动力与电气工程
永磁同步电机矢量控制模糊控制猎豹优化算法Matlab/Simulink
permanent magnet synchronous motorvector controlfuzzy controlcheetah optimizer algorithmMatlab/Simulink
《重庆理工大学学报》 2024 (015)
48-54 / 7
辽宁省自然科学基金项目(2020-MS-216)
评论