基于工况识别的P2.5构型PHEV能量管理策略OA北大核心CSTPCD
Research on energy management strategy of PHEV with P2.5 configuration based on working condition identification
合适的能量管理策略能够有效提升混合动力汽车续驶里程,通过Matlab/Simulink搭建整车模型,对P2.5构型的双动力源插电式混合动力汽车(PHEV)工况识别的能量管理策略展开研究.选取19个国内外典型循环工况,根据工况特征用层次聚类分析法将其划分为3类,建立支持向量机工况识别模型,采用鲸鱼算法对其进行优化,仿真结果表明,优化后工况识别模型识别准确率可达97.905%,与优化前相比,提高了21.646%.结合在线工况识别模型,通过神经网络学习不同工况类别下动态规划能量管理策略的功率分配结果,将离线学习结果应用于在线控制中,制定基于工况识别的能量管理策略.仿真结果显示,与电量消耗-电量维持(CD-CS)策略相比,基于工况识别的能量管理策略经济性提升了7.62%.
Appropriate energy management strategy effectively improves the range of hybrid vehicles.This paper investigates the energy management strategy for condition identification of dual power source plug-in hybrid electric vehicle (PHEV) with P2.5 configuration by constructing the whole vehicle model through Matlab/Simulink.Nineteen domestic and international typical cycling conditions are selected and classified into three categories by hierarchical cluster analysis according to the characteristics of the conditions,and a support vector machine condition identification model is built and optimized by using the whale algorithm.Our simulation results show the identification accuracy of the optimized condition identification model rises to 97.905% from 76.259% recorded with the pre-optimization model,up by 21.646%.Combined with the online working condition recognition model,the power allocation results of the dynamic planning energy management strategy under different working condition categories are learned through neural networks,and the offline learning results are applied to the online control to formulate the energy management strategy based on working condition recognition.Our simulation results show compared with the Charge Depleting-Charge Sustaining (CD-CS) strategy,tthe energy management strategy based on operating condition recognition improve its economy by 7.62%.
罗勇;李豪;翁勇永;李莉莎;李小凡;孙强
重庆理工大学 汽车零部件先进制造技术教育部重点实验室,重庆 400054||宁波圣龙(集团)有限公司 技术中心,浙江 宁波 315199重庆理工大学 汽车零部件先进制造技术教育部重点实验室,重庆 400054宁波圣龙(集团)有限公司 技术中心,浙江 宁波 315199
交通运输
插电式混合动力汽车能量管理策略工况识别动态规划神经网络
plug-in hybrid vehiclesenergy management strategiescondition recognitiondynamic planningneural networks
《重庆理工大学学报》 2024 (015)
74-83 / 10
重庆市技术创新与应用发展重大专项(CSTB2022TIAD-STX0005);重庆市教委科学技术研究项目(KJQN202201125);重庆理工大学重大科研项目(2022TBZ003)
评论