基于深度学习的微纳结构光谱设计研究进展OA北大核心CSTPCD
Research Progress on Deep Learning-Based Spectral Design of Micro-Nano Structures
随着人工智能技术的快速发展,深度学习在微纳结构光谱调控领域展现出了巨大的应用潜力.深度学习可以在无明确物理解析模型的情况下,通过构建复杂的神经网络,从实验或仿真数据中学习微纳结构的光谱响应特性,从而实现高效的设计优化,这为微纳结构的设计提供了一种新的思路和方法.该文综述了近年来深度学习在微纳结构设计中的研究进展,重点讨论了其在结构色、热辐射控制以及窄带光谱传感等光谱调控领域的应用,并展望了该领域未来的发展机遇与挑战.
With the rapid development of artificial intelligence technology,deep learning has shown tremendous potential in the field of spectral regulation of micro-nano structures.By constructing complex neural network models,deep learning can learn the spectral response characteristics of micro-nano structures from experimental or simulation data without the need for explicit physical analytical models,thereby achieving efficient design optimization.This provides a new approach and methodology for the design of micro-nano structures.This paper reviews the recent research progress of deep learning in micro-nano structure design,focusing on its applications in structural color,thermal radiation control,and narrowband spectral sensing,and also discusses future opportunities and challenges in this field.
马文壮;游可唯;张胤;周阳;张丽
电子科技大学国家电磁辐射控制材料工程技术研究中心,成都 611731||电子科技大学多频谱吸波材料与结构教育部重点实验室(B类),成都 611731
电子信息工程
人工智能深度学习微纳结构光谱设计
artificial intelligencedeep learningmicro-nano structuresspectral design
《电子科技大学学报》 2024 (005)
641-654 / 14
国家自然科学基金(52021001,52022018,52472147)
评论