|国家科技期刊平台
首页|期刊导航|电子科技大学学报|基于多模态生理数据的情感识别综述

基于多模态生理数据的情感识别综述OA北大核心CSTPCD

Emotion Recognition Based on Multimodal Physiological Data:A Survey

中文摘要英文摘要

情感识别是人工智能和人机交互领域的重要研究方向,对提高用户体验和应用的智能性具有重要意义.基于多模态生理数据的情感识别由于其数据来源的客观性和多样性,能够更准确地捕捉个体的情感状态,成为近年来的研究热点.首先介绍了情感计算的基本概念和情感理论模型.其次总结了基于生理数据的情感识别方法.再重点介绍了基于多模态生理数据的情感识别流程,包括生理数据预处理、传统机器学习方法以及深度学习方法.最后分析了基于多模态生理数据的情感识别面临的主要挑战和对未来的展望.

Emotion recognition is an important research direction in the fields of artificial intelligence and human-computer interaction.It has significant implications for enhancing user experience and the intelligence of applications.Emotion recognition based on multimodal physiological data has become a research hotspot in recent years due to the objectivity and diversity of its data sources,which enable more accurate capture of an individual's emotional state.Firstly,the basic concepts of affective computing and emotion representation models are introduced.Secondly,emotion recognition methods based on physiological data are summarized.Then,the focus shifts to the process of emotion recognition based on multimodal physiological data,including physiological data preprocessing,traditional machine learning methods,and deep learning methods.Finally,the main challenges faced by emotion recognition based on multimodal physiological data are analyzed,and future prospects are discussed.

刘颖;袁莉;祖铄迪;范有腾;谢宁;杨阳

军事科学院军队政治工作研究院,北京 100091电子科技大学计算机科学与工程学院,成都 611731

计算机与自动化

情感识别生理数据深度学习机器学习

emotional recognitionphysiological datadeep learningmachine learning

《电子科技大学学报》 2024 (005)

720-731 / 12

国家自然科学基金(62306067)

10.12178/1001-0548.2024176

评论