|国家科技期刊平台
首页|期刊导航|航空科学技术|基于多特征融合的增强现实跟踪定位方法研究

基于多特征融合的增强现实跟踪定位方法研究OA

Research on Augmented Reality Tracking and Localization Method Based on Multi-feature Fusion

中文摘要英文摘要

针对大范围场景下增强现实辅助飞机装配作业,增强现实设备的移动空间定位精度与鲁棒性直接影响到装配引导过程.基于该背景,本文提出了一种综合点、线特征和人工标志的多特征融合的增强现实的同步定位与地图构建(SLAM)跟踪定位方法.首先,相邻两帧图像间检测人工标志同步提取和匹配点、线特征,采用人工标志计算恢复相机初始位姿,同时构建包含人工标志的初始地图;然后实时跟踪人工标志得到相机位姿初值,并通过相机观测到目标点的重投影误差求解最优相机位姿;即使相机跟踪丢失,也能够依靠场景中的人工标志信息辅助相机重定位;最后,通过地图中的人工标志约束信息提高回环矫正的准确率和减小空间定位的累积误差.在真实飞机装配场景和实验室环境下的测试结果表明,本文所提方法能有效提高SLAM定位精度和稳定性,使得移动场景下虚拟装配模型的虚实注册精度更高且鲁棒性更强.

For augmented reality-assisted aircraft assembly operations in large-scale scenarios,the mobile spatial localization accuracy and robustness of augmented reality devices directly affect the assembly guidance process.Based on this background,a multi-feature fusion visual Simultaneous Localization and Mapping(SLAM)tracking and localization method that integrates point and line features and artificial signs is proposed.Firstly,the artificial markers are detected between two adjacent frames to synchronize the extraction and matching of point and line features,and the artificial markers are used to calculate and recover the initial camera position while constructing the initial map containing the artificial markers;then the artificial markers are tracked in real time to obtain the initial value of the camera position,and the camera position is optimized by the reprojection error of the camera observed to the target point.Even if the camera tracking is lost,we can rely on the artificial marker information in the scene to assist the camera repositioning;finally,the artificial marker constraint information in the map is used to improve the accuracy of loopback correction and reduce the cumulative error of spatial localization.Test results in real aircraft assembly scenes and laboratory environments show that the method proposed in this paper can effectively improve the accuracy and stability of SLAM localization,which makes the virtual assembly model in the mobile scene more accurate and robust in terms of virtual registration.

刘勇强;贾保国;田辉;崔海华;李鹏程;曲峻学

南京航空航天大学,江苏 南京 210016中航西安飞机工业集团股份有限公司,陕西 西安 710089

增强现实位姿变换点线特征空间定位

ARpostural transformationpoint-line featuresspatial localization

《航空科学技术》 2024 (009)

80-91 / 12

航空科学基金(2020Z050052002,2022Z072052002) Aeronautial Science Foundation of China(2020Z050052002,2022Z072052002)

10.19452/j.issn1007-5453.2024.09.009

评论