|国家科技期刊平台
首页|期刊导航|可再生能源|提高数据中心供能中太阳能利用效率的云任务调度优化

提高数据中心供能中太阳能利用效率的云任务调度优化OA北大核心CSTPCD

Cloud tasks scheduling optimization for improving solar energy utilization efficiency in data center power supply

中文摘要英文摘要

云计算需求在催生数据中心部署应用的同时,造成能耗高和碳排放压力,故云计算环境中可再生能源的高效利用问题被提出.针对太阳能的间歇性非稳特点,文章研究了云任务调度方法来提升数据中心供能中能源利用率.首先,构建预测太阳能产能的深度自回归模型DeepAR;然后,利用延时容忍型任务和计划工作任务在时间维度上灵活调度的特性,设计云任务调度策略和算法;最后,运用GluonTS框架使用真实任务数据集和太阳能产能数据集进行仿真实验.结果表明,计算负荷与太阳能出力的匹配性得到改善,数据中心太阳能供能的利用率得到提升.

Cloud computing demand has caused high energy consumption and carbon emission pressure while generating data center deployment applications,so the efficient utilization of renewable energy in cloud computing environment is proposed.Aiming at the intermittent non-stationary characteristics of solar energy,which is a specific form of renewable energy,we study the cloud task scheduling method to enhance the energy utilization in data center energy supply.DeepAR,a deep autoregressive model for predicting solar energy production capacity,is constructed to design cloud task scheduling strategies and algorithms by taking advantage of the flexible scheduling characteristics of delay-tolerant tasks and scheduled workloads in the time dimension,and simulation experiments are carried out using real task datasets and solar energy production capacity datasets by applying the GluonTS framework.The results show that the matching between computing load and solar power output is improved,and the utilization of solar power supply in data centers is enhanced.

党伟超;王振;薛颂东

太原科技大学 经济与管理学院,山西 太原 030024

能源与动力

DeepAR模型时间序列预测太阳能云任务调度

DeepAR modeltime series predictionsolar energycloud tasksscheduling

《可再生能源》 2024 (009)

1170-1178 / 9

太原科技大学博士科研启动基金(20202063);太原科技大学研究生教育创新项目(SY2022063);太原科技大学研究生联合培养示范基地项目(JD2022010).

评论