| 注册
首页|期刊导航|可再生能源|提高数据中心供能中太阳能利用效率的云任务调度优化

提高数据中心供能中太阳能利用效率的云任务调度优化

党伟超 王振 薛颂东

可再生能源2024,Vol.42Issue(9):1170-1178,9.
可再生能源2024,Vol.42Issue(9):1170-1178,9.

提高数据中心供能中太阳能利用效率的云任务调度优化

Cloud tasks scheduling optimization for improving solar energy utilization efficiency in data center power supply

党伟超 1王振 1薛颂东1

作者信息

  • 1. 太原科技大学 经济与管理学院,山西 太原 030024
  • 折叠

摘要

Abstract

Cloud computing demand has caused high energy consumption and carbon emission pressure while generating data center deployment applications,so the efficient utilization of renewable energy in cloud computing environment is proposed.Aiming at the intermittent non-stationary characteristics of solar energy,which is a specific form of renewable energy,we study the cloud task scheduling method to enhance the energy utilization in data center energy supply.DeepAR,a deep autoregressive model for predicting solar energy production capacity,is constructed to design cloud task scheduling strategies and algorithms by taking advantage of the flexible scheduling characteristics of delay-tolerant tasks and scheduled workloads in the time dimension,and simulation experiments are carried out using real task datasets and solar energy production capacity datasets by applying the GluonTS framework.The results show that the matching between computing load and solar power output is improved,and the utilization of solar power supply in data centers is enhanced.

关键词

DeepAR模型/时间序列预测/太阳能/云任务/调度

Key words

DeepAR model/time series prediction/solar energy/cloud tasks/scheduling

分类

能源科技

引用本文复制引用

党伟超,王振,薛颂东..提高数据中心供能中太阳能利用效率的云任务调度优化[J].可再生能源,2024,42(9):1170-1178,9.

基金项目

太原科技大学博士科研启动基金(20202063) (20202063)

太原科技大学研究生教育创新项目(SY2022063) (SY2022063)

太原科技大学研究生联合培养示范基地项目(JD2022010). (JD2022010)

可再生能源

OA北大核心CSTPCD

1671-5292

访问量0
|
下载量0
段落导航相关论文