| 注册
首页|期刊导航|农业机械学报|基于时域卷积网络与Transformer的茶园蒸散量预测模型

基于时域卷积网络与Transformer的茶园蒸散量预测模型

赵秀艳 王彬 都晓娜 王武闯 丁兆堂 周长安 张开兴

农业机械学报2024,Vol.55Issue(9):337-346,10.
农业机械学报2024,Vol.55Issue(9):337-346,10.DOI:10.6041/j.issn.1000-1298.2024.09.029

基于时域卷积网络与Transformer的茶园蒸散量预测模型

Evapotranspiration Prediction Model of Tea Garden Based on Temporal Convolutional Network and Transformer

赵秀艳 1王彬 1都晓娜 2王武闯 3丁兆堂 4周长安 5张开兴5

作者信息

  • 1. 山东农业大学信息科学与工程学院,泰安 271018
  • 2. 潍柴雷沃智慧农业科技股份有限公司,潍坊 261200
  • 3. 山东科润信息技术有限公司,威海 264200
  • 4. 山东省农业科学院茶叶研究所,济南 250100
  • 5. 山东农业大学机械与电子工程学院,泰安 271018
  • 折叠

摘要

Abstract

In tea garden water resource management,accurately assessing crop water requirements is crucial,with evapotranspiration(ET)serving as a key indicator.The challenges posed by the time series nature,instability,and non-linear coupling in tea garden data were addressed by introducing a novel evapotranspiration prediction model.Firstly,a data processing algorithm,mutual information-principal component analysis(MI PC A),was employed to integrate mutual information(MI)and principal component analysis(PCA),facilitating the selection of features strongly correlated with tea garden transpiration and the extraction of principal components.Subsequently,the temporal convolutional networks(TCN)was integrated with Transformer to construct a new model.Specifically,the grey wolf optimization(GWO)algorithm was employed to optimize the hyperparameters of the TCN,followed by the utilization of the Transformer to capture global dependencies.Ultimately,the two networks were integrated to propose the hybrid model MIPCA-TCN-GWO-Transformer.The model performance was validated through ablation experiments and comparative analyses,while also examining the model's performance across different time scales.The results showed that the model's three evaluation indicators such as mean absolute percentage error(MAPE),root mean square error(RMSE)and coefficient of determination(R2)were 0.015 mm/d,0.312 mm/d and 0.962,respectively,which as better than that of traditional prediction models such as long short term memory(LSTM).R2 at hourly scale,daily scale and monthly scale were 0.986,0.978 and 0.946,respectively,showing good adaptability and accuracy at different time scales.The MIPCA-TCN-GWO-Transformer model constructed had high prediction accuracy and can provide scientific reference for the optimal management of tea garden water resources and the formulation of irrigation systems.

关键词

茶园/蒸散量/预测模型/主成分分析/互信息/时域卷积网络

Key words

tea garden/evapotranspiration/prediction model/principal component analysis/mutual information/time convolutional network

分类

农业科技

引用本文复制引用

赵秀艳,王彬,都晓娜,王武闯,丁兆堂,周长安,张开兴..基于时域卷积网络与Transformer的茶园蒸散量预测模型[J].农业机械学报,2024,55(9):337-346,10.

基金项目

山东省科技型中小企业创新能力提升工程项目(2022TSGC2487、2023TSGC0557)、日照市重点研发计划项目(2023ZDYF010129)和泰安市科技创新重大专项项目(2023NYLZ13) (2022TSGC2487、2023TSGC0557)

农业机械学报

OA北大核心CSTPCD

1000-1298

访问量4
|
下载量0
段落导航相关论文