| 注册
首页|期刊导航|农业机械学报|基于MobileViT-CBAM的枇杷表面缺陷检测方法

基于MobileViT-CBAM的枇杷表面缺陷检测方法

赵茂程 邹涛 齐亮 汪希伟 李大伟

农业机械学报2024,Vol.55Issue(9):420-427,8.
农业机械学报2024,Vol.55Issue(9):420-427,8.DOI:10.6041/j.issn.1000-1298.2024.09.037

基于MobileViT-CBAM的枇杷表面缺陷检测方法

Detection Method for Loquat Surface Defect Based on MobileViT-CBAM Network

赵茂程 1邹涛 1齐亮 2汪希伟 1李大伟1

作者信息

  • 1. 南京林业大学机械电子工程学院,南京 210037
  • 2. 南京林业大学机械电子工程学院,南京 210037||南京林业大学金埔研究院,南京 210037
  • 折叠

摘要

Abstract

The MobileViT as the main feature extraction network was employed in order to accomplish quick and precise post-harvest screening of loquats in the paper.A lightweight network model called MobileViT-CBAM was developed as a result of strengthening the network's capacity to extract detailed features in both channel and spatial dimensions by inserting convolutional block attention module(CBAM)after Layer1 and Layer2.The method outperformed MobileViT in terms of defect recognition accuracy,showing gains of 1.17 percentage points on the validation set and 1.23 percentage points on the test set for things like scars,mechanical damage,and decaying fruits.According to experimental results,the MobileViT-CBAM model performed better in terms of accuracy(97.86%)than VGG16,ResNet34,and MobileNetV2.It also had the advantage of having a small memory footprint(3.768 MB)and a rapid inference time(42 ms per image).It was possible to use this lightweight network model on embedded systems.The research offered an effective and precise technique for external quality inspection of loquats and other agricultural products by providing a theoretical framework for fault recognition in the construction of an online detection system for loquats.

关键词

枇杷/MobileViT-CBAM/缺陷检测/轻量化

Key words

loquat/MobileViT-CBAM/defect detection/lightweight

分类

林学

引用本文复制引用

赵茂程,邹涛,齐亮,汪希伟,李大伟..基于MobileViT-CBAM的枇杷表面缺陷检测方法[J].农业机械学报,2024,55(9):420-427,8.

基金项目

江苏省农业科技自主创新资金项目(CX(23)1027)、国家自然科学基金项目(32102071)、金埔研究院研究专项资金项目(NLJP0005)和水杉师资科研启动项目(163040193、163040194) (CX(23)

农业机械学报

OA北大核心CSTPCD

1000-1298

访问量3
|
下载量0
段落导航相关论文