| 注册
首页|期刊导航|水利学报|基于VMD及深度学习的供水管道小尺度泄漏检测研究

基于VMD及深度学习的供水管道小尺度泄漏检测研究

郑书闽 颜建国 郭鹏程 徐燕 李江 刘振兴

水利学报2024,Vol.55Issue(8):999-1008,10.
水利学报2024,Vol.55Issue(8):999-1008,10.DOI:10.13243/j.cnki.slxb.20230676

基于VMD及深度学习的供水管道小尺度泄漏检测研究

Small-scale pipeline leak detection based on VMD and deep learning

郑书闽 1颜建国 2郭鹏程 2徐燕 3李江 3刘振兴1

作者信息

  • 1. 西安理工大学水利水电学院,陕西西安 710048
  • 2. 西安理工大学水利水电学院,陕西西安 710048||西安理工大学省部共建西北旱区生态水利国家重点实验室,陕西西安 710048
  • 3. 新疆维吾尔自治区寒旱区水资源与生态水利工程研究中心(院士专家工作站),新疆乌鲁木齐 830000
  • 折叠

摘要

Abstract

To address the challenge of detecting leakage signals under normal pressure and small-scale leaks,this paper focuses on the detection of water supply pipeline leaks.The experimental data of leakage under the conditions of 100-220 kPa pressure and 40-80 m3/h volume flow were obtained,and the variations in pressure signals under small-scale leak conditions were analyzed.The experimental data is denoised by using Variational Mode Decompo-sition(VMD)to reduce noise interference and enhance leak signal characteristics,followed by standardization process.The study combines typical recurrent neural networks,including Long Short-Term Memory(LSTM),Bi-directional Long Short-Term Memory(BiLSTM),and Gated Recurrent Unit(GRU),with Convolutional Neural Network(CNN)to construct three deep learning leakage detection models CNN-LSTM,CNN-BiLSTM,and CNN-GRU.These models were evaluated for their predictive performance,among them,the CNN-GRU model exhibited the highest predictive accuracy of 99.56%for all experimental data.The results indicate that the models demonstrate high accuracy in detecting leaks under normal pressure and small-scale leak conditions.CNN proves to be instrumental in extracting pertinent features efficiently and accurately,thereby improving the prediction accuracy of the leakage detection model.The research provides valuable support for the intelligent management of pipeline leakage detection system.

关键词

泄漏检测/小尺度泄漏/变分模态分解/深度学习/供水管道

Key words

leak detection/small-scale leakage/variational mode decomposition/deep learning/water supply pipe-line

分类

建筑与水利

引用本文复制引用

郑书闽,颜建国,郭鹏程,徐燕,李江,刘振兴..基于VMD及深度学习的供水管道小尺度泄漏检测研究[J].水利学报,2024,55(8):999-1008,10.

基金项目

国家自然科学基金项目(51839010) (51839010)

陕西省创新能力支撑计划项目(2024RS-CXTD-31) (2024RS-CXTD-31)

陕西高校青年创新团队项目(2020-29) (2020-29)

新疆水专项(2020.C-001) (2020.C-001)

水利学报

OA北大核心CSTPCD

0559-9350

访问量0
|
下载量0
段落导航相关论文