基于多元自适应回归样条的黄土区滑坡敏感性评价OA北大核心CSTPCD
Susceptibility Assessment of Landslide in the Loess Region Based on Multivariate Adaptive Regression Spline
[目的]探讨和评价致灾因子对黄土滑坡敏感性区划的影响,以辅助滑坡灾害的监测、预警和防治.[方法]在因子筛选和独立性检验基础上,基于多元自适应回归样条模型(MARS)自主分割数据,正向拟合若干基函数,同时构建了铰链函数在各基函数之间建立连接机制,进而反向自我修正,剔除或修改部分基函数,实现自主选择致灾因子和给出因子权重,最后引入了概率比(PR)模型做精度对比分析.[结果](1)MARS模型的基函数物理含义明确,极大地降低了模型的复杂度,易于GIS空间分析实现;(2)评价因子的多重共线性和相关性检验有助于MARS模型优化;(3)MARS模型对极高敏感区和高敏感区的划分较PR模型更为严谨、客观,且滑坡敏感等级区划结果是所有参评因子综合作用的结果,关键因子对评价结果的影响并不明显.[结论]MARS模型在铜川市耀州区黄土滑坡敏感性评价研究中,ROC曲线的AUC值为0.879,整体拟合效果好,与野外实地勘察结果相吻合,结果可靠.
[Objective]The purpose of this study is to explore and evaluate the influence of disaster factors on the susceptibility zoning of Loess landslide,so as to assist the monitoring,warning and prevention of landslide disaster.[Methods]Based on factor screening and independence test,multiple adaptive regression spline model(MARS)was used to independently segment the data,to fit several basis functions,to construct hinge functions to establish a connection mechanism between the basis functions,and then to reverse self-correct,to eliminate or modify part of the basis functions to achieve independent selection of disaster factors and give factor weights.At last,probability ratio(PR)model was introduced to analyze the accuracy.[Results](1)The physical meaning of the base function of MARS model is clear,which greatly reduces the complexity of the model and is easy to implement GIS spatial analysis.(2)The multicollinearity and correlation tests of assessment factors are helpful for MARS model optimization.(3)The classification of extremely sensitive and highly sensitive areas by MARS model is more rigorous and objective than that by PR model,and the result of landslide susceptibility classification is the result of the comprehensive effect of all the participating factors,and the influence of key factors on the assessment results is not obvious.[Conclusion]In the study on the susceptibility assessment of Loess landslide in Yaozhou District of Tongchuan City by MARS model,the AUC value of ROC curve is 0.879,the overall fitting effect is good,and the results are consistent with the field investigation results,and the results are reliable.
潘网生;赵恬茵;李鑫;卢玉东
黔南民族师范学院旅游与资源环境学院,贵州都匀 558000石家庄铁道大学土木学院,石家庄 050043长安大学水利与环境学院,西安 710054
地质学
多元自适应回归样条黄土滑坡敏感性评价
multivariate adaptive regression splineloesslandslidesusceptibility assessment
《水土保持研究》 2024 (006)
271-280 / 10
黔南民族师范学院支持引进高层次人才研究专项项目(2021qnsyrc03);贵州省自然科学基金重点项目(黔科合基础[2018]1416);黄土高原土壤侵蚀与旱地农业国家重点实验室基金课题(A314021402-202113);中央引导地方科技发展资金项目(236Z5405G);河北省自然科学基金(E2021210092);黔南民族师范学院2024年度重点研究科研能力提升项目(2024zdzk07)
评论