基于轻量级深度网络的信号检测与样式识别OA
Signal Detection and Pattern Recognition Based on Lightweight Deep Networks
信号检测与识别是无线通信、频谱感知等领域的核心技术之一.基于深度学习技术的信号检测与识别方法是近年来的研究热点.深度学习模型通常具有巨量的模型参数和较高的计算复杂度,导致模型的推理应用需要依托高性能计算平台.为了实现基于深度学习的信号检测与样式识别技术在端侧低成本设备上的推理应用,研究面向信号检测与识别深度学习模型的轻量化技术.通过提出一种基于组件重要性度量的模型稀疏化方法,以及基于模仿学习的轻量化模型参数优化策略,在确保信号检测识别准确性能的前提下大大精简了模型结构.
Signal detection and recognition are key technologies in wireless communication and spectrum sensing.Recently,deep learning-based approaches for signal detection and recognition have gained significant research attention.However,deep learning models typically involve a vast number of parameters and high computational complexity,making their deployment dependent on high-performance computing platforms.To enable the practical application of deep learning-based signal detection and pattern recognition on low-cost edge devices,this study focuses on lightweight techniques for deep learning models.A model sparsity method based on component importance measurement is proposed,along with a lightweight model parameter optimization strategy using imitation learning.These techniques significantly reduce the model size while maintaining the accuracy of signal detection and recognition.
陈啸宇;李扬清;梁颋
中国电子科技集团公司第七研究所,广东 广州 510310
电子信息工程
信号检测与识别深度学习轻量化网络
signal detection and recognitiondeep learninglightweight networks
《移动通信》 2024 (009)
8-15 / 8
评论