| 注册
首页|期刊导航|沉积与特提斯地质|基于CNN-BiLSTM-Attention的三峡库区滑坡地表位移预测研究

基于CNN-BiLSTM-Attention的三峡库区滑坡地表位移预测研究

陈欢 冯晓亮 刘一民 赵晗 刘洋 郭浪 张军

沉积与特提斯地质2024,Vol.44Issue(3):572-581,10.
沉积与特提斯地质2024,Vol.44Issue(3):572-581,10.DOI:10.19826/j.cnki.1009-3850.2024.08006

基于CNN-BiLSTM-Attention的三峡库区滑坡地表位移预测研究

Research on predicting surface displacement of landslides based on CNN-BiLSTM-Attention in the Three Gorges reservoir area

陈欢 1冯晓亮 1刘一民 2赵晗 2刘洋 3郭浪 4张军4

作者信息

  • 1. 中国地质科学院探矿工艺研究所,四川 成都 611734||自然资源部地质灾害风险防控工程技术创新中心,四川 成都 611734
  • 2. 成都工业学院 智能制造学院,四川 成都 611730
  • 3. 云阳县地质环境监测站,重庆 404500
  • 4. 重庆一零七市政建设工程有限公司,重庆 401120
  • 折叠

摘要

Abstract

Surface displacement prediction is of great significance in landslide monitoring and early warning,and establishing a stable and reliable landslide displacement prediction model is crucial.This paper utilizes a convolutional neural network(CNN)and attention mechanism to predict landslide displacement,and takes the Huangniba Dengkan landslide in the Three Gorges reservoir area as an example for verification.This paper comprehensively analyzes the landslide's monitoring data on rainfall,reservoir water level,and surface displacement for 8 years.It establishes a CNN-BiLSTM-Attention deep learning combination prediction model,and uses adaptive learning rate and regularization techniques for model training,improving the generalization ability of the model while avoiding overfitting.Additionally,the model is subjected to comparative validation with the traditional long short-term memory(LSTM)model.The results show that the model's landslide displacement prediction accuracy has been significantly enhanced compared to traditional machine learning and neural network methods.The prediction model's goodness of fit(R2)reaches 0.989,and the mean absolute percentage error(MAPE)is merely 0.059.

关键词

滑坡监测/地表位移/注意力机制/预测模型/三峡库区

Key words

landslide monitoring/surface displacement/attention mechanism/predictive model/Three Gorges reservoir area

分类

天文与地球科学

引用本文复制引用

陈欢,冯晓亮,刘一民,赵晗,刘洋,郭浪,张军..基于CNN-BiLSTM-Attention的三峡库区滑坡地表位移预测研究[J].沉积与特提斯地质,2024,44(3):572-581,10.

基金项目

国家自然科学青年基金资助项目"断层面库仑应力变化监测方法的力学机理实验研究"(41804089) (41804089)

中国地质调查局项目"地质灾害监测预警与防治支撑(探矿工艺所)"(DD20230447) (探矿工艺所)

沉积与特提斯地质

OA北大核心CSTPCD

1009-3850

访问量0
|
下载量0
段落导航相关论文