| 注册
首页|期刊导航|安全与环境工程|水文水井钻探泥浆特征参数在线监测技术

水文水井钻探泥浆特征参数在线监测技术

高辉 徐媛 蒋巍 冼天朗 刘乃鹏 张棣 段隆臣

安全与环境工程2024,Vol.31Issue(5):209-218,10.
安全与环境工程2024,Vol.31Issue(5):209-218,10.DOI:10.13578/j.cnki.issn.1671-1556.20230512

水文水井钻探泥浆特征参数在线监测技术

Technology of online monitoring of mud characteristic parameters for hydrological well drilling

高辉 1徐媛 2蒋巍 2冼天朗 1刘乃鹏 3张棣 4段隆臣1

作者信息

  • 1. 中国地质大学(武汉)工程学院,湖北 武汉 430074
  • 2. 青海省环境地质勘查局,青海 西宁 810007||青海九零六工程勘察设计院有限责任公司,青海 西宁 810007
  • 3. 中国地质大学(武汉)自动化学院,湖北 武汉 430074
  • 4. 中国地质大学(武汉)未来技术学院,湖北 武汉 430074
  • 折叠

摘要

Abstract

Hydrological well drilling is an important technical means for developing groundwater resources,and the discharge of mud generated during the drilling process can cause a certain degree of damage to the ecological environment.In order to purify the mud and recycle it effectively,the online monitoring scheme for the mud is studied.Firstly,the pipeline viscometer was used to measure the mud density,apparent viscosity,plastic vis-cosity,dynamic shear force in real-time.Then,through pre-trained neural network models based on mud densi-ty,rheology parameters and sand content,the sand content in the mud after solid phase control was predicted.The test results show that the average measurement error of mud density,apparent viscosity,plastic viscosity,and dynamic shear force through the monitoring of pipeline viscometer is 0.2%,1.7%,3.4%,and 3.7%re-spectively.The average prediction error of sand content through the neural network model is 15.9%.The pre-diction model does not rely on the mud formulations used for model training and can be applied to any other mud formulation with the same system,which shows that the model has a certain degree of generalization.This on-line mud monitoring system meets the requirements of green exploration and is suitable for on-site applications in hydrogeology and water well drilling.

关键词

水文水井钻探/泥浆净化/在线监测/泥浆性能参数/含砂量/BP神经网络

Key words

hydrological well drilling/mud purification/online monitoring/mud performance parameter/sand content/BP neural network

分类

资源环境

引用本文复制引用

高辉,徐媛,蒋巍,冼天朗,刘乃鹏,张棣,段隆臣..水文水井钻探泥浆特征参数在线监测技术[J].安全与环境工程,2024,31(5):209-218,10.

基金项目

青海省二O二O年重点研发与转化计划项目(2020-SF-149) (2020-SF-149)

安全与环境工程

OA北大核心CSTPCD

1671-1556

访问量1
|
下载量0
段落导航相关论文