渐进式CNN-Transformer语义补偿息肉分割网络OA北大核心CSTPCD
Progressive CNN-transformer semantic compensation network for polyp segmentation
针对结肠镜图像中息肉大小不一、形态复杂、息肉与黏膜界限不清导致分割精度较低的问题,提出了一个渐进式CNN-Transformer语义补偿息肉分割网络,以提高结肠息肉的分割精度.为了更好地利用来自CNN编码器的局部特征和来自Transformer编码器的全局特征,设计了一个同层特征交互耦合模块,通过分组交互耦合的方式在空间和通道两个维度上自适应融合来自CNN和Transformer编码器的特征;然后,针对解码过程中上采样导致的语义丢失问题,设计了一个基于Query的语义补偿模块,通过一组可学习的描述子渐进式地集成和分发图像语义,有效提升网络的特征判别能力;实验结果表明,所提网络在CVC-ClinicDB,CVC-300,Kvasir以及CVC-ColonDB公开数据集上,mDice分别达到了94.23%,90.36%,92.93%,80.26%,mIoU分别达到了89.87%,83.75%,88.21%,72.09%.与现有的分割网络相比,该网络能够在提升息肉分割有效性的同时保证其泛化性.
In response to the problem of low segmentation accuracy in colon polyp images due to varying sizes,complex shapes,and unclear boundaries between polyps and mucosa,a progressive CNN-Trans-former semantic compensation polyp segmentation network was proposed to improve the segmentation ac-curacy of colon polyps.In order to better utilize the local features from the CNN encoder and the global features from the Transformer encoder,a same-layer feature interaction coupling module was designed to adaptively fuse features from the CNN and Transformer encoders in both spatial and channel dimensions through grouped interaction coupling.Then,to address the issue of semantic loss caused by upsampling during the decoding process,a Query-based semantic compensation module was designed.This module gradually integrates and distributes image semantics through a set of learnable descriptors,effectively en-hancing the network's feature discrimination capability.The experimental results show that the proposed network achieved mDice scores of 94.23%,90.36%,92.93%,and 80.26%on the CVC-ClinicDB,CVC-300,Kvasir,and CVC-ColonDB public datasets,respectively.The mIoU scores are 89.87%,83.75%,88.21%,and 72.09%,respectively.Compared to existing segmentation networks,the pro-posed network can effectively improve the effectiveness of polyp segmentation while ensuring its general-ization.
李大湘;李登辉;刘颖;唐垚
西安邮电大学 通信与信息工程学院,陕西 西安 710121
计算机与自动化
息肉分割卷积神经网络Transformer特征交互语义补偿
polyp segmentationconvolutional neural networktransformerfeature interactionseman-tic compensation
《光学精密工程》 2024 (016)
2523-2536 / 14
国家自然科学基金(No.62071379);陕西省自然科学基金(No.2019JM-604)
评论