| 注册
首页|期刊导航|光学精密工程|基于混合时空卷积的轻量级视频超分辨率重建

基于混合时空卷积的轻量级视频超分辨率重建

夏振平 陈豪 张宇宁 程成 胡伏原

光学精密工程2024,Vol.32Issue(16):2564-2576,13.
光学精密工程2024,Vol.32Issue(16):2564-2576,13.DOI:10.37188/OPE.20243216.2564

基于混合时空卷积的轻量级视频超分辨率重建

Lightweight video super-resolution based on hybrid spatio-temporal convolution

夏振平 1陈豪 2张宇宁 3程成 1胡伏原1

作者信息

  • 1. 苏州科技大学 电子与信息工程学院,江苏 苏州 215009||江苏省工业智能低碳技术工程中心,江苏 苏州 215009
  • 2. 苏州科技大学 电子与信息工程学院,江苏 苏州 215009
  • 3. 东南大学 电子科学与工程学院 显示技术研究中心,江苏 南京 210096||新型显示与视觉感知石城实验室,江苏 南京 210013
  • 折叠

摘要

Abstract

Addressing the issue of high computational complexity and limited extraction of spatio-temporal features in 3D convolutional neural networks for video super-resolution tasks,this paper introduced a novel lightweight video super-resolution reconstruction network based on hybrid spatio-temporal convolution.Firstly,a hybrid spatio-temporal convolution-based module was proposed to realize the enhancement of the spatio-temporal feature extraction capability of the network as well as reduction of the computational complexity.Then,a similarity-based selective feature fusion module was proposed to further enhance the extraction capability of relevant features.Lastly,a motion compensation module based on the attention mechanism was designed to mitigate the effects of erroneous feature fusion to a certain extent.The experi-mental results demonstrate that the proposed network can achieve a favorable balance between video super-resolution performance and network complexity,and the 4-fold super-resolution reaches 8 frames per sec-ond on the benchmark dataset SPMCS-11.The proposed network meets the requirements for fast and ac-curate reasoning operations on edge devices.

关键词

视频超分辨率/深度学习/三维卷积神经网络/特征融合

Key words

video super-resolution/deep learning/3D Convolutional Neural Network/feature fusion

分类

计算机与自动化

引用本文复制引用

夏振平,陈豪,张宇宁,程成,胡伏原..基于混合时空卷积的轻量级视频超分辨率重建[J].光学精密工程,2024,32(16):2564-2576,13.

基金项目

国家自然科学基金资助项目(No.62002254) (No.62002254)

江苏省自然科学基金资助项目(No.BK20200988) (No.BK20200988)

苏州市科技计划项目(No.SNG-2023002) (No.SNG-2023002)

光学精密工程

OA北大核心CSTPCD

1004-924X

访问量0
|
下载量0
段落导航相关论文