| 注册
首页|期刊导航|华东师范大学学报(自然科学版)|面向MOOCs的个性化知识概念推荐

面向MOOCs的个性化知识概念推荐

孔超 陈家会 孟丹 刁华彬 王维 张丽平 刘涛

华东师范大学学报(自然科学版)Issue(5):32-44,13.
华东师范大学学报(自然科学版)Issue(5):32-44,13.DOI:10.3969/j.issn.1000-5641.2024.05.004

面向MOOCs的个性化知识概念推荐

Personalized knowledge concept recommendation for massive open online courses

孔超 1陈家会 1孟丹 2刁华彬 1王维 1张丽平 1刘涛1

作者信息

  • 1. 安徽工程大学 计算机与信息学院,安徽 芜湖 241000
  • 2. OPPO研究院,广东 深圳 518000
  • 折叠

摘要

Abstract

In recent years,massive open online courses(MOOCs)have become a significant pathway for acquiring knowledge and skills.However,the increasing number of courses has led to severe information overload.Knowledge concept recommendation aims to identify and recommend specific knowledge points that students need to master.Existing research addresses the challenge of data sparsity by constructing heterogeneous information networks;however,there are limitations in fully leveraging these networks and considering the diverse interactions between learners and knowledge concepts.To address these issues,this study proposes a novel method,heterogeneous learning behavior-aware knowledge concept recommendation(HLB-KCR).First,it uses metapath-based random walks and skip-gram algorithms to generate semantically rich metapath embeddings and optimizes these embeddings through a two-stage enhancement module.Second,a multi-type interaction graph incorporating temporal contextual information is constructed,and a graph neural network(GNN)is employed for message passing to update the nodes,obtaining deep embedded representations that include time and interaction type information.Third,a semantic attention module is introduced to integrate meta-path embeddings with multi-type interaction embeddings.Finally,an extended matrix factorization rating prediction module is used to optimize the recommendation algorithm.Extensive experiments on the large-scale public MOOCCubeX dataset demonstrate the effectiveness and rationality of the HLB-KCR method.

关键词

在线学习/知识概念推荐/图神经网络/异质信息网络

Key words

online learning/knowledge concept recommendation/graph neural network/heterogeneous information network

分类

信息技术与安全科学

引用本文复制引用

孔超,陈家会,孟丹,刁华彬,王维,张丽平,刘涛..面向MOOCs的个性化知识概念推荐[J].华东师范大学学报(自然科学版),2024,(5):32-44,13.

基金项目

安徽省高等学校科学研究项目(自然科学类)(2023AH050914) (自然科学类)

安徽省高等学校省级质量工程项目(2023zybj018) (2023zybj018)

安徽省教育厅重大教学研究项目(2023jyxm0451) (2023jyxm0451)

芜湖市科技计划项目(2023pt07,2023ly13) (2023pt07,2023ly13)

安徽工程大学本科教学质量提升计划项目(2022lzyybj02) (2022lzyybj02)

华东师范大学学报(自然科学版)

OA北大核心CSTPCD

1000-5641

访问量1
|
下载量0
段落导航相关论文