| 注册
首页|期刊导航|华东师范大学学报(自然科学版)|基于序列感知与多元行为数据的MOOCs知识概念推荐

基于序列感知与多元行为数据的MOOCs知识概念推荐

任俊霖 王欢 黄骁迪 李艳婷 琚生根

华东师范大学学报(自然科学版)Issue(5):45-56,12.
华东师范大学学报(自然科学版)Issue(5):45-56,12.DOI:10.3969/j.issn.1000-5641.2024.05.005

基于序列感知与多元行为数据的MOOCs知识概念推荐

Sequence-aware and multi-type behavioral data driven knowledge concept recommendation for massive open online courses

任俊霖 1王欢 1黄骁迪 1李艳婷 1琚生根1

作者信息

  • 1. 四川大学 计算机学院,成都 610065
  • 折叠

摘要

Abstract

In massive open online courses(MOOCs),knowledge concept recommendation aims to analyze and extract learning records from a platform to recommend personalized knowledge concepts to users,thereby avoiding the inefficiencies caused by the blind selection of learning content.However,existing methods often lack comprehensive utilization of the multidimensional aspects of user behavior data,such as sequential information and complex interactions.To address this issue,we propose STRec,a sequence-aware and multi-type behavioral data driven knowledge concept recommendation method for MOOCs.STRec extracts the sequential information of knowledge concepts and combines it with the features produced by graph convolutional networks using an attention mechanism.This facilitates the prediction of a user's next knowledge concept of interest.Moreover,by employing multi-type contrastive learning,our method integrates user-interest preferences with various interaction relationships to accurately capture personalized features from complex interactions.The experimental results on the MOOCCube dataset demonstrate that the proposed method outperforms existing baseline models across multiple metrics,validating its effectiveness and practicality in knowledge concept recommendation.

关键词

知识概念推荐/序列建模/对比学习

Key words

knowledge concept recommendation/sequence modeling/contrastive learning

分类

信息技术与安全科学

引用本文复制引用

任俊霖,王欢,黄骁迪,李艳婷,琚生根..基于序列感知与多元行为数据的MOOCs知识概念推荐[J].华东师范大学学报(自然科学版),2024,(5):45-56,12.

基金项目

国家自然科学基金(62137001) (62137001)

华东师范大学学报(自然科学版)

OA北大核心CSTPCD

1000-5641

访问量0
|
下载量0
段落导航相关论文