| 注册
首页|期刊导航|化工进展|基于物理信息神经网络的甲烷无氧芳构化反应的正反问题

基于物理信息神经网络的甲烷无氧芳构化反应的正反问题

李依梦 陈运全 何畅 张冰剑 陈清林

化工进展2024,Vol.43Issue(9):4817-4823,7.
化工进展2024,Vol.43Issue(9):4817-4823,7.DOI:10.16085/j.issn.1000-6613.2023-1392

基于物理信息神经网络的甲烷无氧芳构化反应的正反问题

Forward and reverse problems of methane dehydro-aromatization based on physics-informed neural network

李依梦 1陈运全 1何畅 2张冰剑 3陈清林3

作者信息

  • 1. 中山大学材料科学与工程学院,广东 广州 510006
  • 2. 中山大学化学工程与技术学院,广东 珠海 519082||广东省石化过程节能工程技术研究中心,广东广州 510006
  • 3. 中山大学材料科学与工程学院,广东 广州 510006||广东省石化过程节能工程技术研究中心,广东广州 510006
  • 折叠

摘要

Abstract

Research on solving the forward and reverse problems of chemical reaction kinetics modeling can help to gain a deeper understanding of reaction mechanisms and reduce experimental costs.This study took the one-dimensional packed bed methane dehydro-aromatization(MDA)as an example and used a physics-informed neural network to couple the chemical reaction mechanism equations into the loss function.In this way,a solution framework for reaction kinetics modeling and parameter inversion was constructed.Firstly,the optimal neural network hyperparameters were determined by solving the forward problem.The results showed that the constructed model had good predictive performance in solving the MDA reaction kinetics model,with training error and extrapolation error L2 of 0.19%and 0.95%,respectively.Based on this,the rate constants of MDA were inverted using labeled data under 0,0.1%,and 0.3%Gaussian noise,and the predicted values obtained from training had a relative error within 0.5%of the true values,demonstrating the ability of physics-informed learning to perform inversion for unknown kinetic parameters under low-quality data.

关键词

甲烷无氧芳构化/物理信息神经网络/反应动力学模型/反问题

Key words

methane dehydro-aromatization/physics-informed neural network/reaction kinetic model/inverse problem

分类

化学化工

引用本文复制引用

李依梦,陈运全,何畅,张冰剑,陈清林..基于物理信息神经网络的甲烷无氧芳构化反应的正反问题[J].化工进展,2024,43(9):4817-4823,7.

基金项目

广东省自然科学基金(2022A1515010479) (2022A1515010479)

国家自然科学基金(22078373). (22078373)

化工进展

OA北大核心CSTPCD

1000-6613

访问量0
|
下载量0
段落导航相关论文