| 注册
首页|期刊导航|火力与指挥控制|基于深度强化学习的边缘计算资源分配方法

基于深度强化学习的边缘计算资源分配方法

谢陶 黄迎春

火力与指挥控制2024,Vol.49Issue(9):185-190,6.
火力与指挥控制2024,Vol.49Issue(9):185-190,6.DOI:10.3969/j.issn.1002-0640.2024.09.027

基于深度强化学习的边缘计算资源分配方法

Edge Computing Resource Allocation Method Based on Deep Reinforcement Learning

谢陶 1黄迎春1

作者信息

  • 1. 沈阳理工大学,沈阳 110159
  • 折叠

摘要

Abstract

The characteristics of edge computing make it have broad military application prospects.FL(Federated Learning)is introduced into edge computing.Considering the limited resources of IoT devices,FL accuracy and device energy consumption need to be taken into account.A framework combin-ing deep reinforcement learning,federated learning,and self attention mechanism(DRL-FLSL)is pro-posed to select devices and allocate resources to them,with the goal of balancing FL accuracy and device energy consumption.This framework introduces LSTM(Long Short Term Memory)to predict network state and adds a multi head self attention mechanism for more accurate information extraction.The simulation experimental results show that DRL-FLSL has super training effects and can effectively balance FL accu-racy and equipment energy consumption.

关键词

深度强化学习/边缘计算/联邦学习/资源分配

Key words

deep reinforcement learning/edge computing/federated learning/resource allocation

分类

信息技术与安全科学

引用本文复制引用

谢陶,黄迎春..基于深度强化学习的边缘计算资源分配方法[J].火力与指挥控制,2024,49(9):185-190,6.

基金项目

国家自然科学基金资助项目(61971291) (61971291)

火力与指挥控制

OA北大核心CSTPCD

1002-0640

访问量0
|
下载量0
段落导航相关论文