| 注册
首页|期刊导航|红外技术|结合Transformer与生成对抗网络的水下图像增强算法

结合Transformer与生成对抗网络的水下图像增强算法

袁红春 张波 程心

红外技术2024,Vol.46Issue(9):975-983,9.
红外技术2024,Vol.46Issue(9):975-983,9.

结合Transformer与生成对抗网络的水下图像增强算法

Underwater Image Enhancement Algorithm Combining Transformer and Generative Adversarial Network

袁红春 1张波 1程心2

作者信息

  • 1. 上海海洋大学信息学院,上海 201306
  • 2. 上海海洋大学海洋生物资源与管理学院,上海 201306
  • 折叠

摘要

Abstract

Owing to the diversity of underwater environments and the scattering and selective absorption of light in water,acquired underwater images usually suffer from severe quality degradation problems,such as color deviation,low clarity,and low brightness.To solve these problems,an underwater image enhancement algorithm that combines a transformer and generative adversarial network is proposed.Based on the generative adversarial network,a generative adversarial network with transformer(TGAN)network enhancement model is constructed by combining the coding and decoding structure,global feature modeling transformer module based on the spatial self-attention mechanism,and channel-level multi-scale feature fusion transformer module.The model focuses on color and spatial channels with more serious underwater image attenuation.This effectively enhances the image details and solves the color-deviation problem.Additionally,a multinomial loss function,combining RGB and LAB color spaces,is designed to constrain the adversarial training of the network enhancement model.The experimental results demonstrate that when compared to typical underwater image enhancement algorithms,such as contrast-limited adaptive histogram equalization(CLAHE),underwater dark channel prior(UDCP),underwaterbased onconvolutional neural network(UWCNN),and fast underwater image enhancement for improved visual perception(FUnIE-GAN),the proposed algorithm can significantly improve the clarity,detail texture,and color performance of underwater images.Specifically,the average values of the objective evaluation metrics,including the peak signal-to-noise ratio,structural similarity index,and underwater image quality measure,improve by 5.8%,1.8%,and 3.6%,respectively.The proposed algorithm effectively improves the visual perception of underwater images.

关键词

图像处理/水下图像增强/Transformer/生成对抗网络/多项损失函数

Key words

image processing/underwater image enhancement/Transformer/generative adversarial network/multinomial loss function

分类

计算机与自动化

引用本文复制引用

袁红春,张波,程心..结合Transformer与生成对抗网络的水下图像增强算法[J].红外技术,2024,46(9):975-983,9.

基金项目

国家自然科学基金(41776142). (41776142)

红外技术

OA北大核心CSTPCD

1001-8891

访问量0
|
下载量0
段落导航相关论文