|国家科技期刊平台
首页|期刊导航|红外技术|基于改进YOLOv7的变电站设备红外图像识别方法

基于改进YOLOv7的变电站设备红外图像识别方法OA北大核心CSTPCD

Infrared Image Recognition Method of Substation Equipment Based on Improved YOLOv7

中文摘要英文摘要

变电站电气设备红外图像识别是其进行缺陷与故障诊断的重要前提,能保障电力系统的安全稳定运行.为达到变电站设备高精准、高效率的识别效果,本文提出了一种基于改进YOLOv7 网络的变电站设备红外图像识别方法.变电站采集到的红外图像作为YOLOv7 网络的输入,在红外图像的识别中,采用CoordConv卷积层增加图像坐标信息,增强网络层的信息细节,丰富图像特征内容;引入注意力机制排除其他信息干扰,增强模型的特征表达能力,提高网络训练精度;为进一步提高识别精度,不同于传统损失函数的构建,采用WIoU损失函数加速网络收敛,提高模型的准确性.通过对变电站采集的实际红外图像进行分析,实验结果表明,所提出的基于改进YOLOv7 网络的变电站设备红外图像识别模型识别精度能达到 97.1%.相较于YOLOv7 网络和其他几种典型网络,所提模型具有较高的准确性和鲁棒性,可以有效应用于变电站设备的智能监测和维护,为后续故障诊断工作提供基础条件.

Infrared image recognition of substation electrical equipment is an important prerequisite for defect and fault diagnosis to ensure the safe and stable operation of power systems.To realize high-precision and high-efficiency recognition of substation equipment,in this study,an infrared image recognition method of substation equipment is proposed based on an improved YOLOv7 network.The infrared image acquired by the substation is used as the input for the YOLOv7 network.In the recognition of infrared images,a CoordConv convolution layer is used to increase the image coordinate information,enhance the information details of the network layer,and enrich the image feature content.The attention mechanism is introduced to eliminate other information interference,enhance the feature expression ability of the model,and improve the accuracy of network training.To further improve the recognition accuracy,unlike the traditional loss function,the WIoU loss function is used to accelerate the network convergence and improve the model accuracy.By analyzing the actual infrared images acquired by the substation,the experimental results show that the recognition accuracy of the infrared image recognition model of the substation equipment based on the improved YOLOv7 network can reach 97.1%.Compared with the YOLOv7 network and other typical networks,the proposed model has higher accuracy and robustness and can be effectively applied to intelligent monitoring and maintenance of substation equipment,providing basic conditions for subsequent fault diagnosis.

陈怡伦;马萍;贾爱迪;张宏立

新疆大学 电气工程学院,新疆维吾尔自治区 乌鲁木齐 830017国网昌吉供电公司,新疆维吾尔自治区 昌吉 831100

计算机与自动化

变电站设备红外图像识别YOLOv7CoordConv注意力机制WIoU

substation equipmentinfrared image recognitionYOLOv7CoordConvattention mechanismsWIoU

《红外技术》 2024 (009)

1035-1042 / 8

新疆维吾尔自治区自然科学基金资助项目(2022D01C367);国家自然科学基金资助项目(复杂数据特征下风电传动系统故障诊断研究,52065064,52267010).

评论