| 注册
首页|期刊导航|海洋测绘|基于浅剖图像的海底管线状态自动诊断方法

基于浅剖图像的海底管线状态自动诊断方法

郑根 赵建虎 苑明哲 杨文林

海洋测绘2024,Vol.44Issue(4):16-20,5.
海洋测绘2024,Vol.44Issue(4):16-20,5.DOI:10.3969/j.issn.1671-3044.2024.04.004

基于浅剖图像的海底管线状态自动诊断方法

A real-time detection method for underwater pipeline in side scan sonar images based on semantic segmentation

郑根 1赵建虎 2苑明哲 3杨文林4

作者信息

  • 1. 广州工业智能研究院,广东 广州 511458||广东智能无人系统研究院(南沙),广东 广州 511458||中国科学院 沈阳自动化研究所,辽宁 沈阳 110169
  • 2. 武汉大学 测绘学院,湖北 武汉 430079
  • 3. 广州工业智能研究院,广东 广州 511458
  • 4. 广东智能无人系统研究院(南沙),广东 广州 511458
  • 折叠

摘要

Abstract

To fill the research gap in automatic diagnosis of underwater pipeline burial status using SBP images and improve the automation level of underwater pipeline inspection,a complete set of automatic diagnosis methods and processes for underwater pipeline burial status has been provided.Firstly,efficient data preprocessing methods were used to accurately restore the true information of pipelines.Secondly,accurate extraction of seabed lines was achieved based on Frangi filter enhancement technology.Then,deep learning technology was used to achieve high reliability detection of pipeline targets.Finally,criteria for determining the burial status of pipelines was provided,and the burial status of pipelines was automatically determined using the positional relationship between pipeline detection results and the seabed.Experiments were conducted using measured data from various types of shallow layer profilers,and the results showed that the detection accuracy of underwater pipelines can reach a Recall of 0.952 and a mAP of 0.962.Based on the target detection,accurate diagnosis of pipeline burial status can be achieved.

关键词

浅地层剖面仪/水下管线调查/Frangi滤波/目标检测/深度学习/状态诊断

Key words

sub-bottom profiler/underwater pipeline survey/Frangi filtering/object detection/deep learning/status diagnosis

分类

天文与地球科学

引用本文复制引用

郑根,赵建虎,苑明哲,杨文林..基于浅剖图像的海底管线状态自动诊断方法[J].海洋测绘,2024,44(4):16-20,5.

基金项目

广东省自然资源厅海洋六大产业专项项目(GDNRC[2023]32). (GDNRC[2023]32)

海洋测绘

OA北大核心CSTPCD

1671-3044

访问量0
|
下载量0
段落导航相关论文