| 注册
首页|期刊导航|海洋测绘|基于轻量化YOLOv7算法的侧扫声纳图像沉船检测

基于轻量化YOLOv7算法的侧扫声纳图像沉船检测

王胜平 刘娉婷 陈晓红 陈志高

海洋测绘2024,Vol.44Issue(4):21-25,5.
海洋测绘2024,Vol.44Issue(4):21-25,5.DOI:10.3969/j.issn.1671-3044.2024.04.005

基于轻量化YOLOv7算法的侧扫声纳图像沉船检测

Side-scan sonar image shipwreck detection based on lightweight YOLOv7 algorithm

王胜平 1刘娉婷 1陈晓红 2陈志高1

作者信息

  • 1. 东华理工大学 测绘与空间信息工程学院,江西 南昌 330013
  • 2. 交通运输部 长江上海航道处,上海 200010
  • 折叠

摘要

Abstract

For the existing side-scan sonar underwater shipwreck detection method,there are deficiencies in the detection speed and leakage detection in YOLOv5.This paper proposes an improved method for underwater wreck detection based on the lightweight YOLOv7 algorithm.First,the sampling numbers of shipwreck images are expanded by random flip,random noise and other operations.Second,a transfer learning strategy is introduced to transfer the weights learned on the COCO dataset to the YOLOv7 network for shipwreck detection.Third,the computation of the penalty term in the loss function of the model is improved to enhance the speed of convergence.Finally,a FasterNet structure is introduced into the YOLOv7 network,which reduces the number of parameters and the computational complexity of the model,and reduces the hardware requirement of the model to achieve lightweight model.The experimental results show that the improved method improves the class mean accuracy value(mAP value)by 4.75%compared with the original YOLOv7 algorithm,and the detection speed is also improved from 0.021 8 fps to 0.017 9 fps,which proves the value of the improved method in this paper for engineering applications.

关键词

侧扫声纳图像/沉船检测/YOLOv7算法/FasterNet结构/迁移学习

Key words

side-scan sonar images/shipwreck detection/YOLOv7/FasterNet/transfer leaering

分类

天文与地球科学

引用本文复制引用

王胜平,刘娉婷,陈晓红,陈志高..基于轻量化YOLOv7算法的侧扫声纳图像沉船检测[J].海洋测绘,2024,44(4):21-25,5.

基金项目

国家自然科学基金(42266006) (42266006)

自然资源部海洋环境探测技术与应用重点实验室开放基金(MESTA-2020-A002) (MESTA-2020-A002)

江西省重点研发计划(20212BBE53031). (20212BBE53031)

海洋测绘

OA北大核心CSTPCD

1671-3044

访问量0
|
下载量0
段落导航相关论文