结合轻量化与多尺度融合的交通标志检测算法OA北大核心CSTPCD
Combining Lightweight and Multiscale Fusion for Traffic Sign Detection Algorithm
交通标志检测在自动驾驶领域具有重要的应用价值,及时准确地检测交通目标对提高驾驶安全性和预防交通事故具有重要意义.针对交通标志尺寸小,易受遮挡,在复杂环境下容易出现漏检、错检等问题,在YOLOv8的结构基础上提出一种结合轻量化与多尺度融合的交通标志检测网络架构M-YOLO,构建M-YOLOs模型来应对高精度需求的检测任务,并调整网络深度得到更轻量化的M-YOLOn模型来解决不同环境下的检测需求.首先针对交通标志目标尺寸小、图像特征流失的问题,通过增加小目标检测层,保留更多的特征信息,提高网络对于小目标的特征学习能力.提出高效多尺度特征金字塔融合网络MPANet,将浅层特征图进行降维与跳跃连接,从而融合更多的图像特征信息.然后提出融合稀疏注意力和空间注意力的BRSA注意力模块,有效提取全局和局部的位置信息,减少复杂背景下对于关键信息的干扰.最后设计两种轻量高效的BBot模块和C2fGhost模块,以提高模型运算速度并减少参数量.实验结果表明,M-YOLO相较于YOLOv8,参数量降低约1/3.在TT100K数据集和GTSDB数据集上,M-YOLOs检测精度分别提升了 9.7和2.1个百分点,M-YOLOn检测精度分别提升了 14.5和2.6个百分点,在轻量化的同时具备更高的检测效果.M-YOLO架构解决了浅层特征图在特征提取过程中信息丢失的问题,并显著降低模型特征提取过程中冗余的计算开销,在实景采集的数据集上证实效果有效,表明在交通标志检测任务中具有应用价值.
Traffic sign detection is critical for autonomous driving is of essence,as timely and accurate identification of these signs enhances driving safety and reduces the risk of traffic accidents.However,in complex environments,small-sized and obstructed traffic signs are often missed or incorrectly identified.To address this problem,a novel traffic-sign detection network architecture,Multiple You Only Look Once(M-YOLO),is proposed based on the YOLOv8 framework.M-YOLO integrates lightweight design and multiscale fusion to achieve precise detection tasks.A variant,Multiple YOLO small(M-YOLOs),is developed by adjusting network depth,and a lighter version,Multiple YOLO nano(M-YOLOn),is created to meet detection requirements in various environments.To enhance the detection of small traffic signs and mitigate feature loss,the network's feature learning capability is improved by incorporating a small target detection layer.This layer preserves more feature information,and a multiscale feature pyramid fusion network,Multiple Path Aggregation Network(MPANet),is proposed to reduce the dimensionality of shallow feature maps while using skip connections to fuse additional image feature information.Furthermore,a Bi-level Routing and Spatial Attention(BRSA)module is introduced to combine sparse and spatial attention,extracting both global and local positional information while reducing interference from complex backgrounds.To optimize the model,two lightweight and efficient modules,BBot and C2fGhost,are developed to reduce parameters and enhance computational speed.Experimental results demonstrated that M-YOLO reduced the number of parameters by approximately one-third compared to YOLOv8.On the TT100K and German Traffic Sign Detection Benchmark(GTSDB)datasets,the detection accuracy of M-YOLOs improved by 9.7 and 2.1 percentage points,respectively,and M-YOLOn achieved improvements of 14.5 and 2.6 percentage points.This lightweight approach led to enhanced detection performance,effectively addressing the issue of information loss during feature extraction from flat feature maps and significantly reducing unnecessary computations in the model.The effectiveness of the M-YOLO architecture is validated on a dataset collected from rea-world scenarios,demonstrating its practical value in traffic sign detection tasks.
兰红;王惠钊
江西理工大学信息工程学院,江西赣州 341000
计算机与自动化
卷积神经网络轻量化模型目标检测注意力模块多尺度融合
Convolutional Neural Network(CNN)lightweight modelsobject detectionattention modulemulti-scale fusion
《计算机工程》 2024 (010)
381-392 / 12
江西省研究生创新专项资金项目(YC2023-S659).
评论