| 注册
首页|期刊导航|计算机工程|基于混合动作强化学习的电动汽车聚合商决策优化算法

基于混合动作强化学习的电动汽车聚合商决策优化算法

孔月萍 杨世海 段梅梅 丁泽诚 方凯杰

计算机工程2024,Vol.50Issue(10):418-428,11.
计算机工程2024,Vol.50Issue(10):418-428,11.DOI:10.19678/j.issn.1000-3428.0068701

基于混合动作强化学习的电动汽车聚合商决策优化算法

Optimal Decision-making Algorithm for Electric Vehicle Aggregator Based on Hybrid Action Reinforcement Learning

孔月萍 1杨世海 1段梅梅 1丁泽诚 1方凯杰1

作者信息

  • 1. 国网江苏省电力有限公司营销服务中心,江苏南京 210019
  • 折叠

摘要

Abstract

Electric vehicles(EV),when managed centrally by aggregators,can be utilized as flexible and adjustable resources to participate in energy market arbitrage and provide ancillary services to the grid.To optimize this potential,this study introduces an advanced decision-making algorithm for EV aggregators based on hybrid action reinforcement learning.The algorithm uses continuous actions to optimize market bidding decisions and discrete actions to manage the dynamic switching between different power disaggregation strategies,realizing a joint optimization of market bidding and power disaggregation.In addition,the study presents an EV aggregator flexibility modelling method that considers the value of unit flexibility,aiming to maximize the total daily flexibility value while ensuring that the charging demand of each vehicle is met.Simulation results show that dynamic policy switching effectively leverages the strengths of both priority decomposition and proportional decomposition strategies,helping to reduce battery degradation and maintain the flexibility of two-way battery regulation.The proposed algorithm enhances the operational economy of EV charging stations,outperforming algorithms that focus solely on optimizing the bidding decision.

关键词

强化学习/混合动作输出/电动汽车聚合商/功率分解/市场投标

Key words

reinforcement learning/hybrid action output/Electric Vehicle(EV)aggregator/power allocation/market bidding

分类

计算机与自动化

引用本文复制引用

孔月萍,杨世海,段梅梅,丁泽诚,方凯杰..基于混合动作强化学习的电动汽车聚合商决策优化算法[J].计算机工程,2024,50(10):418-428,11.

基金项目

国网江苏省电力有限公司科技项目(J2022127). (J2022127)

计算机工程

OA北大核心CSTPCD

1000-3428

访问量3
|
下载量0
段落导航相关论文