|国家科技期刊平台
首页|期刊导航|计算机工程与应用|群智能优化算法最新进展

群智能优化算法最新进展OA北大核心CSTPCD

Recent Progress of Swarm Intelligent Optimization Algorithms

中文摘要英文摘要

群智能优化算法是一种模拟自然界中生物群体行为特征的优化算法,具有全局搜索能力强、适应性强、并行性强和易于实现的优点.群智能优化算法属于生物启发式算法,在解决复杂优化问题时,面临收敛速度、参数敏感性和鲁棒性的挑战.近年来,在群智能优化算法领域,研究者已经提出了一系列新型的群智能优化算法.综述了最新提出的六种群智能优化算法及其变体模型和应用,并在CEC2020测试函数上进行实验.全面评估了这六种群智能优化算法的收敛精度和稳定性,并简要阐述了群智能优化算法的未来发展趋势.

Swarm intelligent optimization algorithm is a kind of optimization algorithm that simulates the behavior char-acteristics of biological groups in nature.It has the advantages of strong global searching ability,strong adaptability,strong parallelism,and easy implementation.Swarm intelligent optimization algorithm is a bio-inspired algorithm,which faces the challenges of convergence speed,parameter sensitivity,and robustness when solving complex optimization prob-lems.In recent years,in the field of swarm intelligence optimization algorithms,researchers have proposed a series of new swarm intelligence optimization algorithms.The newly proposed six-swarm intelligent optimization algorithms and its variant models and applications are reviewed,and experiments are carried out on CEC2020 test function.The conver-gence accuracy and stability of these six swarm intelligent optimization algorithms are evaluated comprehensively,and the future development trend of swarm intelligent optimization algorithms is briefly described.

陈丽芳;曹柯欣;张思鹏;白浩然;韩阳;代琪

华北理工大学 理学院,河北 唐山 063210

计算机与自动化

群智能优化算法生物启发式算法收敛精度稳定性

swarm intelligent optimization algorithmbio-inspired algorithmconvergence accuracystability

《计算机工程与应用》 2024 (019)

46-67 / 22

国家自然科学基金面上项目(52074126).

10.3778/j.issn.1002-8331.2403-0328

评论