| 注册
首页|期刊导航|计算机工程与应用|基于知识蒸馏的道路交通标志识别神经网络

基于知识蒸馏的道路交通标志识别神经网络

葛怡源 于明鑫

计算机工程与应用2024,Vol.60Issue(19):110-119,10.
计算机工程与应用2024,Vol.60Issue(19):110-119,10.DOI:10.3778/j.issn.1002-8331.2308-0446

基于知识蒸馏的道路交通标志识别神经网络

Lightweight Road Traffic Sign Identification Neural Network Based on Knowledge Distillation

葛怡源 1于明鑫1

作者信息

  • 1. 北京信息科技大学仪器科学与技术系,北京 100192
  • 折叠

摘要

Abstract

Recognition of traffic signs in natural scenes is susceptible to interference from factors such as lighting,occlu-sions,and blurriness,which can affect detection accuracy.Additionally,existing deep learning models have a large num-ber of parameters and high computational complexity,resulting in longer model inference times.The article proposes a neural network architecture adaptive feature extraction-vision Transformer(AFE-ViT)based on knowledge distillation for road traffic sign recognition.The architecture consists of an adaptive feature extraction module and a lightweight vision Transformer(ViT)classifier.It combines local and global feature information in the image,and has better adaptability to road traffic sign recognition in natural scenes.Among them,the adaptive feature extraction module combines Inception-NetV1,SKNet ideas and residual structure to realize the adaptive selection of multiple receptive fields,and as the front module of ViT,it effectively improves the efficiency of feature extraction.It chooses ResNet18 as the teacher network and AFE-ViT as the student network,and uses feature-level and output-level knowledge distillation methods to distill AFE-ViT and compress model parameters.The experimental results show that the recognition accuracy of this method can reach 98.98%,and the number of model parameters is only 9.9×105,which is better than similar deep learning models.

关键词

交通标识/知识蒸馏/自适应特征提取

Key words

traffic sign identification/knowledge distillation/adaptive feature extraction

分类

信息技术与安全科学

引用本文复制引用

葛怡源,于明鑫..基于知识蒸馏的道路交通标志识别神经网络[J].计算机工程与应用,2024,60(19):110-119,10.

基金项目

国家自然科学基金(U21A6003) (U21A6003)

北京信息科技大学勤信英才项目(5112111145). (5112111145)

计算机工程与应用

OA北大核心CSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文