| 注册
首页|期刊导航|计算机工程与应用|零担物流时序预测的SARIMA-GRU-BPNN组合模型及应用

零担物流时序预测的SARIMA-GRU-BPNN组合模型及应用

秦音 郭杜杜 周飞 王庆庆 王洋

计算机工程与应用2024,Vol.60Issue(19):297-308,12.
计算机工程与应用2024,Vol.60Issue(19):297-308,12.DOI:10.3778/j.issn.1002-8331.2309-0081

零担物流时序预测的SARIMA-GRU-BPNN组合模型及应用

Combined SARIMA-GRU-BPNN Model for LTL Logistics Time Series Prediction and Application

秦音 1郭杜杜 2周飞 1王庆庆 1王洋1

作者信息

  • 1. 新疆大学 智能制造现代产业学院,乌鲁木齐 830017
  • 2. 新疆大学 交通运输工程学院,乌鲁木齐 830017
  • 折叠

摘要

Abstract

Aiming at the problem that the significant seasonal,nonlinear,and stochastic characteristics of the demanded material flow of less-than-truck-load logistics(LTL)make it difficult to predict,a prediction method of SARIMA-GRU-BPNN combined model for LTL time series prediction is proposed.The seasonal decomposition model is used to decom-pose the logistics flow into trend,seasonality,and residual,the seasonal difference autoregressive moving average model(SARIMA)is used to fit the linear change for the trend component,the gated recurrent neural network(GRU)is used to fit the seasonal change for the seasonal component,and the back-propagation neural network(BPNN)is used to fit the nonlinear and stochastic change for the residual component,and the combination reconstruction is used to get the final pre-diction value.Based on the experimental results,the root mean square error(RMSE)is decreased by 31.5%,34.5%,and 47.1%when compared to single self-contained models SARIMA,GRU,and BPNN,respectively.Additionally,the RMSE is reduced by 71.3%,68.9%,54.4%,and 70.7%when compared to other single models gray model,support vector ma-chines,long and short-term memory networks,and multiple linear regression,respectively.Furthermore,the RMSE is re-duced by 71.3%,68.9%,and 54.4%when compared to combined models gray model,support vector machines,and long and short-term memory networks,respectively.In comparison to combined models ARIMA-GRU,ARIMA-BPNN,and ARIMA-SVM,the RMSE is reduced by 31.0%,43.0%,and 56.1%,respectively.The goodness-of-fit of the trend and sea-sonal component prediction models reaches 92%and 99%,effectively reducing the overall prediction error and improving prediction accuracy and model robustness.

关键词

零担物流/需求预测/时序分解/组合模型/人工神经网络

Key words

less-than-truck-load logistics(LTL)/demand prediction/chronological decomposition/combinatorial model/artificial neural networks

分类

信息技术与安全科学

引用本文复制引用

秦音,郭杜杜,周飞,王庆庆,王洋..零担物流时序预测的SARIMA-GRU-BPNN组合模型及应用[J].计算机工程与应用,2024,60(19):297-308,12.

基金项目

新疆维吾尔自治区重点研发计划项目(2022B01015) (2022B01015)

道路交通安全公安部重点实验室开放课题基金(2023ZDSYSK-FKT06) (2023ZDSYSK-FKT06)

甘泉堡经开区科技计划项目(GKJ2023XTWL04). (GKJ2023XTWL04)

计算机工程与应用

OA北大核心CSTPCD

1002-8331

访问量4
|
下载量0
段落导航相关论文