面向中医药大模型的知识增强方法研究OA北大核心CSTPCD
Knowledge Augmentation on Traditional Chinese Medicine Language Model
近年来,大语言模型(LLM)在各个领域取得了许多重大成果.由于缺乏专业知识,以及中医和现代医学的思想不同,大模型在中医药领域的应用仍是一项挑战.现有的知识增强方法难以保持中医方剂具有的自身结构性.为了解决以上问题,提出了一种新的知识增强方法.该方法由模型训练、图谱构建和知识增强三部分组成.在模型训练阶段,通过对基础大模型在中医药数据集上进行预训练和微调两阶段训练,得到中医药领域大模型.在图谱构建阶段,基于中医十万首经典方剂和古籍中的方剂,利用清洗后的数据集构建中医药图谱.在知识增强阶段,基于对知识图谱上信息的计算,利用检索图谱中的专业知识和图谱结构计算检索结果,中医药方剂中的结构特性得以保留.在中医药方剂配伍任务上,针对于任务特性提出了一组评价标准,包括主观指标和客观指标,用于评估模型在该任务上的表现.实验表明,该方法相对于基准测试模型,在主观指标和客观指标上均获得了较大提升,BLEU-1最高提升0.09,ROUGE-1最高提升0.21.消融实验表明,该方法对于模型在该任务上具有较大作用,未使用知识增强的模型BLEU-1相比于使用知识增强下降约37%.
Recently,large language models(LLM)have made significant achievements in various fields.However,due to lack of specialized knowledge and the gap between modern medicine and traditional Chinese medicine(TCM),it is still a challenge to deploy LLM in TCM.Existing methods fail to maintain the structure of TCM pre-scription.To address the problems,a pattern of knowledge augmentation is proposed.The method includes model training,knowledge graph construction and knowledge augmentation.In the training phase,TCM language model is trained on TCM corpus,by a two-stage method combining pre-training and fine-tuning.In the knowledge graph con-struction phase,prescription knowledge graph is constructed from nearly 100000 preprocessed classical TCM pre-scriptions and those from ancient books.In the knowledge augmentation phase,enhanced by the above pattern,out-puts are generated from computation of knowledge graph,according to the schema of knowledge graph from search-ing result,which preserves the structure of prescriptions.A set of evaluations specific to prescription optimizations is proposed,including objective and subjective indicators,to evaluate the performance of the model for the task.Ex-periment shows that the model improves greatly on both subjective and objective evaluations compared with base-lines.BLEU-1 is increased by up to 0.09,while ROUGE-1 is increased by up to 0.21.Ablation study shows that,it is of vital importance for the model performance to be knowledge-augmented.BLEU-1 of augmentation-free model is decreased by about 37%compared with that of the augmented model.
吉祥宇;王鑫;张鹤译;孟昭鹏;张俊华;庄朋伟;贾勇哲;徐大为
天津大学 智能与计算学部,天津 300350天津中医药大学,天津 300193天津中医药大学第一附属医院 国家中医针灸临床医学中心,天津 300193天津大学 智能与计算学部,天津 300350||天大智图(天津)科技有限公司,天津 300192天大智图(天津)科技有限公司,天津 300192
计算机与自动化
大语言模型(LLM)中医药方剂优化检索增强生成
large language model(LLM)traditional Chinese medicineprescription optimizationretrieval aug-mented generation
《计算机科学与探索》 2024 (010)
2616-2629 / 14
国家自然科学基金面上项目(61972275).This work was supported by the National Natural Science Foundation of China(61972275).
评论