| 注册
首页|期刊导航|计算机科学与探索|面向中医药大模型的知识增强方法研究

面向中医药大模型的知识增强方法研究

吉祥宇 王鑫 张鹤译 孟昭鹏 张俊华 庄朋伟 贾勇哲 徐大为

计算机科学与探索2024,Vol.18Issue(10):2616-2629,14.
计算机科学与探索2024,Vol.18Issue(10):2616-2629,14.DOI:10.3778/j.issn.1673-9418.2407082

面向中医药大模型的知识增强方法研究

Knowledge Augmentation on Traditional Chinese Medicine Language Model

吉祥宇 1王鑫 1张鹤译 1孟昭鹏 2张俊华 2庄朋伟 3贾勇哲 4徐大为5

作者信息

  • 1. 天津大学 智能与计算学部,天津 300350
  • 2. 天津中医药大学,天津 300193
  • 3. 天津中医药大学第一附属医院 国家中医针灸临床医学中心,天津 300193
  • 4. 天津大学 智能与计算学部,天津 300350||天大智图(天津)科技有限公司,天津 300192
  • 5. 天大智图(天津)科技有限公司,天津 300192
  • 折叠

摘要

Abstract

Recently,large language models(LLM)have made significant achievements in various fields.However,due to lack of specialized knowledge and the gap between modern medicine and traditional Chinese medicine(TCM),it is still a challenge to deploy LLM in TCM.Existing methods fail to maintain the structure of TCM pre-scription.To address the problems,a pattern of knowledge augmentation is proposed.The method includes model training,knowledge graph construction and knowledge augmentation.In the training phase,TCM language model is trained on TCM corpus,by a two-stage method combining pre-training and fine-tuning.In the knowledge graph con-struction phase,prescription knowledge graph is constructed from nearly 100000 preprocessed classical TCM pre-scriptions and those from ancient books.In the knowledge augmentation phase,enhanced by the above pattern,out-puts are generated from computation of knowledge graph,according to the schema of knowledge graph from search-ing result,which preserves the structure of prescriptions.A set of evaluations specific to prescription optimizations is proposed,including objective and subjective indicators,to evaluate the performance of the model for the task.Ex-periment shows that the model improves greatly on both subjective and objective evaluations compared with base-lines.BLEU-1 is increased by up to 0.09,while ROUGE-1 is increased by up to 0.21.Ablation study shows that,it is of vital importance for the model performance to be knowledge-augmented.BLEU-1 of augmentation-free model is decreased by about 37%compared with that of the augmented model.

关键词

大语言模型(LLM)/中医药/方剂优化/检索增强生成

Key words

large language model(LLM)/traditional Chinese medicine/prescription optimization/retrieval aug-mented generation

分类

信息技术与安全科学

引用本文复制引用

吉祥宇,王鑫,张鹤译,孟昭鹏,张俊华,庄朋伟,贾勇哲,徐大为..面向中医药大模型的知识增强方法研究[J].计算机科学与探索,2024,18(10):2616-2629,14.

基金项目

国家自然科学基金面上项目(61972275).This work was supported by the National Natural Science Foundation of China(61972275). (61972275)

计算机科学与探索

OA北大核心CSTPCD

1673-9418

访问量0
|
下载量0
段落导航相关论文