| 注册
首页|期刊导航|计算机与现代化|基于转置注意力的多尺度深度融合单目深度估计

基于转置注意力的多尺度深度融合单目深度估计

程亚子 雷亮 陈瀚 赵毅然

计算机与现代化Issue(9):121-126,6.
计算机与现代化Issue(9):121-126,6.DOI:10.3969/j.issn.1006-2475.2024.09.020

基于转置注意力的多尺度深度融合单目深度估计

Multi-scale Depth Fusion Monocular Depth Estimation Based on Transposed Attention

程亚子 1雷亮 2陈瀚 1赵毅然1

作者信息

  • 1. 广东工业大学物理与光电工程学院,广东 广州 510006
  • 2. 广东工业大学物理与光电工程学院,广东 广州 510006||广东省信息光子技术重点实验室,广东 广州 510006
  • 折叠

摘要

Abstract

Monocular depth estimation is a fundamental task in computer vision,aiming to predict depth maps from single im-ages and retrieve depth information for corresponding pixel positions.This paper proposes a novel network architecture for mon-ocular depth estimation to further enhance the predictive accuracy of the network.Transposed attention introduces a self-attention mechanism,enabling it to focus on specific regions within the image while reducing the parameter and computation re-quirements.By incorporating information across different channels,it effectively captures fine-grained regions and edge details for learning.The paper presents an improved version of transposed attention that retains semantic information with fewer param-eters.Multi-scale depth fusion leverages the characteristic of extracting features with different depths from distinct channels.It computes the average depth for each channel,enhancing the model's depth perception capability.Furthermore,it models long-range dependencies for vertical distances,effectively separating edges between objects and mitigating the loss of fine-grained in-formation.Finally,the proposed modules'effectiveness is validated through experiments conducted on the NYU Depth V2 data-set and the KITTI dataset,demonstrating exceptional performance.

关键词

深度学习/单目深度估计/转置注意力/多尺度深度融合/通道平均深度

Key words

deep learning/monocular depth estimation/transposed attention/multi-scale deep fusion/channel average depth

分类

计算机与自动化

引用本文复制引用

程亚子,雷亮,陈瀚,赵毅然..基于转置注意力的多尺度深度融合单目深度估计[J].计算机与现代化,2024,(9):121-126,6.

基金项目

国家自然科学基金资助项目(62006046) (62006046)

计算机与现代化

OACSTPCD

1006-2475

访问量0
|
下载量0
段落导航相关论文