| 注册
首页|期刊导航|汽车工程学报|基于时空注意力机制的网约车出行需求预测模型

基于时空注意力机制的网约车出行需求预测模型

王宁 马洪恩

汽车工程学报2024,Vol.14Issue(5):898-910,13.
汽车工程学报2024,Vol.14Issue(5):898-910,13.DOI:10.3969/j.issn.2095‒1469.2024.05.16

基于时空注意力机制的网约车出行需求预测模型

A Travel Demand Prediction Model for Ride-Hailing Services Based on Spatio-Temporal Attention Mechanism

王宁 1马洪恩1

作者信息

  • 1. 同济大学 汽车学院,上海 201804
  • 折叠

摘要

Abstract

The paper aims to solve the problem of forecasting passenger travel demand in e-hailing car operations,thereby reducing vehicle idle rates and minimizing passenger waiting times.Considering the dynamic spatiotemporal dependencies of passenger travel demand,this study proposes a method based on spatial data visualization and the Granger causality test for analyzing the spatial dependency.A spatiotemporal graph convolutional neural network model incorporating attention mechanisms is established to predict passenger travel demand.The case study shows that this model effectively captures the dynamic characteristics of the time-space dependencies of passenger travel demand,improves the prediction performance of the model,and achieves high accuracy and practicability.

关键词

出行需求预测/注意力机制/时空依赖性/时空图卷积神经网络

Key words

travel demand forecasting/attention mechanism/spatiotemporal dependence/attention based spatial temporal graph convolutional networks

分类

交通工程

引用本文复制引用

王宁,马洪恩..基于时空注意力机制的网约车出行需求预测模型[J].汽车工程学报,2024,14(5):898-910,13.

基金项目

同济大学学科交叉联合攻关项目(2023-4-YB-04) (2023-4-YB-04)

汽车工程学报

OACSTPCD

2095-1469

访问量2
|
下载量0
段落导航相关论文