具有临界增长的分数阶Choquard-Kirchhoff型问题解的存在性OA北大核心CSTPCD
Existence of solutions for fractional Choquard-Kirchhoff type problems with critical growth
本文研究一类无界区域上分数阶Choquard-Kirchhoff型问题,此类问题源于横振动中对弦长的非局部测量引起的张力,也可用于刻画量子机械波函数的自引力坍缩.该方程的非线性项包含临界项μ(Iα*|u|2*α,s)|u|2*α,s-2 u和扰动项λf(x)uq-1,其中μ,λ均为正参数,2*α,s为分数阶Hardy-Littlewood-Sobolev临界指数,f(x)为连续函数.本文首先利用 Nehari 流形及 Eke-land 变分原理证…查看全部>>
In this paper,the fractional Choquard-Kirchhoff type problems on unbounded domains are consid-ered.These problems stem from the tension arising from nonlocal measurements of length of a string during transverse vibration and can also be used to describe the self-gravitational collapse of a quantum mechanical wave function.In the problem,the critical term μ(Iα*|u|2*α,s)|u|2*α,s-2 u and perturbation term λf(x)uq-1 are contained in the nonlinear terms,where μ,λ…查看全部>>
桑彦彬;车银芳
中北大学数学学院,太原 030051中北大学数学学院,太原 030051
数学
分数阶Choquard-Kirchhoff型问题Hardy-Littlewood-Sobolev临界指数Nehari流形
Fractional Choquard-Kirchhoff type problemHardy-Littlewood-Sobolev critical exponentNe-hari manifold
《四川大学学报(自然科学版)》 2024 (5)
1-7,7
山西省基础研究计划项目(202103021224198)
评论