首页|期刊导航|数码设计|基于深度学习的网络安全威胁检测与防御策略研究

基于深度学习的网络安全威胁检测与防御策略研究OA

Research on Network Security Threat Detection and Defense Strategy Based on Deep Learning

中文摘要英文摘要

深度学习技术,以其强大的数据处理能力和特征提取机制,为网络安全领域带来了新的解决方案.深度学习在网络安全威胁检测与防御中的应用,包括利用卷积神经网络(CNN)和递归神经网络(RNN)进行恶意软件检测、攻击行为识别和网络流量分析.同时,探讨了深度学习模型在内部威胁检测中的潜力与挑战,如数据的高维性、复杂性以及对抗性攻击的影响.介绍了基于深度强化学习(DRL)的智能网络安全防护策略,该策略通过与环境的交互学习来获得最优的安全防护策略.尽管深度学习在网络安全中的应用前景广阔,但仍存在数据不足、模型解释性差和鲁棒性不足等问题.

Deep learning technology,with its powerful data processing capability and feature extraction mechanism,brings new solutions to the field of network security.The applications of deep learning in cybersecurity threat detection and defense include malware detection,attack behavior identification and network traffic analysis using convolutional neural networks(CNN)and recurrent neural networks(RNN).Also,the potential and challenges of deep learning models for insider threat detection are explored,such as the high dimensionality and complexity of data and the impact of adversarial attacks.An intelligent network security protection strategy based on Deep Reinforcement Learning(DRL)is presented,which learns by interacting with the environment to obtain an optimal security protection strategy.Despite the promising application of deep learning in cyber security,there are still problems such as insufficient data,poor model interpretability and insufficient robustness.

仇学敏

贵州开放大学(贵州职业技术学院),贵阳 550023

计算机与自动化

深度学习网络安全威胁检测防御策略内部威胁

deep learningnetwork securitythreat detectiondefense strategyinsider threat

《数码设计》 2024 (9)

39-42,4

评论