首页|期刊导航|数码设计|三级供应链仿真过程中不确定性因素优化研究

三级供应链仿真过程中不确定性因素优化研究OA

Optimization Research on Uncertainty Factors in the Simulation Process of Three-Tier Supply Chain

中文摘要英文摘要

本文就优化三级供应链仿真模型中不确定性因素的问题,提出了一种基于鲸鱼优化算法的随机森林优化模型优化仿真过程中各环节不确定性的主要影响因素,采用了一种新型的启发式算鲸鱼优化算法(WOA)优化随机森林模型中的决策树数量以及各决策树叶节点上所需的最小样本数来提高模型的准确率.另外,使用流行的机器学习方法,包括分类回归树(CART)和支持向量机(SVM)进行综合对比.实验结果表明,基于本文提出的模型优化不确定性因的准确率优于其他模型.此外,该算法在解决问题的方案、质量方面更加可靠.

In this paper,a random forest optimization model based on the whale optimization algorithm is proposed to optimize the main factors affecting the uncertainty in each link of the simulation process with respect to the problem of optimizing the uncertainty factors in the three-level supply chain simulation model.A novel heuristic arithmetic Whale Optimization Algorithm(WOA)is used to optimize the number of decision trees in the random forest model as well as the minimum number of samples required on the leaf nodes of each decision tree to improve the accuracy of the model.In addition,a comprehensive comparison is performed using popular machine learning methods,including Categorical Regression Trees(CART)and Support Vector Machines(SVM).The experimental results show that the accuracy of optimizing uncertainty factors based on the model proposed in this paper is better than other models.In addition,the algorithm is more reliable in terms of problem solving scheme and quality.

颜鹏贵;王佳斌

华侨大学工学院,福建泉州 362021华侨大学工学院,福建泉州 362021

计算机与自动化

随机森林(RF)鲸鱼算法(WOA)不确定性三级供应链仿真

random forest(RF)whale algorithm(WOA)uncertaintythree-level supply chain simulation

《数码设计》 2024 (9)

70-72,3

评论